Practice Challenge - Subjective

Subject: Mathematics
Topic: Circles Exam Prep 1

1. In Fig. 8.64, PA and PB are tangents from an external point P to a circle with centre O . LN touches the circle at M . Prove that $\mathrm{PL}+\mathrm{ML}=\mathrm{PN}+\mathrm{MN}$.

Fig.8.64

1. $P A=P B$
[TANGENTS DRAWN FROM AN EXTERNAL
POINT TO A CIRCLE ARE EQUAL IN LENGTH]
2. $\mathrm{PL}+\mathrm{AL}=\mathrm{PN}+\mathrm{BN} \quad[\mathrm{P}-\mathrm{L}-\mathrm{A}, \mathrm{AND} P-\mathrm{N}-\mathrm{B}]$
3. $A L=M L \& B N=M N \quad[S A M E$ REASON AS 1]
4. Thus, $\mathrm{PL}+\mathrm{ML}=\mathrm{PN}+\mathrm{MN} \quad$ [FROM 2 AND 3]

Hence, proved.

Practice Challenge - Subjective

2. From a point P , two tangents PA and PB are drawn to a circle with centre O . If $\mathrm{OP}=$ diameter of the circle, show that $\triangle A P B$ is equilateral.
$\angle O A P=90^{\circ} \quad$ (PA and PB are the tangents to the circle.)

In \triangle OPA,
$\sin \angle \mathrm{OPA}=\frac{O A}{O P}=\frac{r}{2 r}$ [OP is the diameter $=2^{*}$ radius]
$\sin \angle \mathrm{OPA}=\frac{1}{2}=\sin 30^{\circ}$
$\angle O P A=30^{\circ}$
Similarly, $\angle \mathrm{OPB}=30^{\circ}$.
$\angle \mathrm{APB}=\angle \mathrm{OPA}+\angle \mathrm{OPB}=30^{\circ}+30^{\circ}=60^{\circ}$

In $\triangle P A B$,
$\mathrm{PA}=\mathrm{PB} \quad$ (tangents from an external point to the circle)
$\Rightarrow \angle \mathrm{PAB}=\angle \mathrm{PBA} \ldots \ldots \ldots . .$. (1) (angles opp.to equal sides are equal)
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB}=180^{\circ} \quad$ [Angle sum property]
$\Rightarrow \angle P A B+\angle P A B=180^{\circ}-60^{\circ}=120^{\circ} \quad$ [Using (1)]
$\Rightarrow 2 \angle \mathrm{PAB}=120^{\circ}$
$\Rightarrow \angle \mathrm{PAB}=60^{\circ}$

From (1) and (2)
$\angle \mathrm{PAB}=\angle \mathrm{PBA}=\angle \mathrm{APB}=60^{\circ}$

All angles are equal in an equilateral triangle. $\left(60^{\circ}\right)$
$\triangle P A B$ is an equilateral triangle

Practice Challenge - Subjective

3.

If $\triangle A B C$ is isosceles with $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{C}(\mathrm{O}, \mathrm{r})$ is the incircle of the $\triangle A B C$ touching $B C$ at L, prove that L bisects $B C$.

Given: $A B C$ is an isosceles triangle.
$\mathrm{C}(\mathrm{O}, \mathrm{r})$ is the incircle of $\triangle A B C$.
$\therefore \mathrm{O}$ is the point of intersection of angle bisector.
(i,e.,) OB bisects B and $O C$ bisects C
In triangle ABC ,
$A B=B C$ (Glven)
$\Rightarrow \angle C=\angle B$ (Since two sides are equal angle between them also equal)
$\Rightarrow \Delta O C L=\triangle O B L$ (OB bisects triangle(B) and OC bisects triangle(C))
In $\triangle O C L$ and $\triangle O B L$,
$\Delta O L B=\Delta O L C$
$\triangle O B L=\triangle O C L$
$B L=L C$
Thus, L bisects the side BC

Practice Challenge - Subjective

4. Let s denotes the semi - perimeter of a $\triangle A B C$, in which $B C=a, C A=b$ and $A B=c$, if a circle touches the sides $B C, C A, A B$ at D, E, F respectively prove that $B D=s-b$.

A circle is inscribed in the $\Delta \mathrm{ABC}$, which touches the BC, CA and AB .

Given, $B C=a . C A=b$ and $A B=c$.

By using the property, tangents are drawn from an external point to the circles are equal in length.
$\therefore B D=B E=x$
$D C=C F=y$
And $A F=A E=z$
Now, $B C+C A+A B=a+b+c$
$\Rightarrow(B D+D C)+(C F+F A)+(A E+E B)=a+b+c$
$\Rightarrow(x+y)+(y+z)+(z+x)=a+b+c$
$\Rightarrow 2(x+y+z)=2 s$
$[\because 2 s=a+b+c=$ perimeter of $\Delta A B C]$
$\Rightarrow s=x+y+z$
$\Rightarrow x=s-(y+z) \quad[\because b=A E+E C=z+y]$
$\Rightarrow B D=s-b$
Hence proved

Practice Challenge - Subjective

5. $A B$ is a diameter of a circle and $A C$ is the chord such that $\angle B A C=30^{\circ}$. If the tangent at C intersects $A B$ extended at D, then $B C=B D$.

True
To prove, BC = BD

Join BC and OC

Given $\angle B A C=30^{\circ}$
$\angle B C D=30^{\circ}$
\Rightarrow [angle between tangent and chord is equal to angle made by chord in the alternate segment]
$\therefore \angle A C D=\angle A C O+\angle O C D=30^{\circ}+90^{\circ}=120^{\circ}$
$\left[O C \perp C D\right.$ and $O A=O C=$ radius $\Rightarrow \angle O A C=\angle O C A=30^{\circ}$
In $\triangle A C D, \angle C A D+\angle A C D+\angle A D C=180^{\circ}$
[Since sum of all interior angles of a triangle is 180°]
$\Rightarrow 30^{\circ}+120^{\circ}+\angle A D C=180^{\circ}$
$\Rightarrow \angle A D C=180^{\circ}-\left(30^{\circ}+120^{\circ}\right)=30^{\circ}$
Now, in $\triangle B C D \angle B C D=\angle B D C=30^{\circ}$
$\Rightarrow B C=B D$
[Since, sides opposite to equal angles are equal]

Practice Challenge - Subjective

6. Write 'True' or 'False' and justify your answer in each of the following :
(i) The length of tangents from an external point P on a circle is always greater than the radius of the circle.
(ii) The length of tangents from an external point P on a circle with centre O is always less than OP.
(i) False

Because the length of tangents from an external point P on a circle may or may not be greater than the radius of the circle.
(ii) True

PT is a tangents drawn from external point P . Join OT
$\therefore O T \perp P T$
So, OPT is a right angled triangle formed
In right angled triangle, hypotenuse is always greater than any of the two sides of the triangle.
$\therefore \mathrm{OP}>\mathrm{PT}$
Or PT < OP

Practice Challenge - Subjective

7. In figure. If $P Q R$ is the tangent to a circle at Q whose centre is $O, A B$ is a chord parallel to PR and $\angle B Q R=70^{\circ}$, then $\angle \mathrm{AQB}$ is equal to

Given , AB || PR

Practice Challenge - Subjective

8. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm , the pair of tangents $P Q$ and $P R$ to the circle is drawn. Then, the area of the quadrilateral $P Q O R$ is

Firstly, draw a circle of radius 5 cm having centre $\mathrm{O} . \mathrm{P}$ is a point at a distance of 13 cm from O . A pair of tangents PQ and PR are drawn.

Thus, Quadrilateral PQOR is formed.
[Since, QP is a tangent line]
$\therefore O Q \perp Q P$
In right angled $\triangle P Q O$,
$O P^{2}=O Q^{2}+Q P^{2}$
$\Rightarrow 13^{2}=5^{2}+Q P^{2}$
$\Rightarrow Q P^{2}=169-25=144$
$Q P=12 \mathrm{~cm}$
Now, area of $\triangle O Q P=\frac{1}{2} \times Q P \times Q O$
$=\frac{1}{2} \times 12 \times 5=30 \mathrm{~cm}^{2}$
\therefore Area of quadrilateral $Q O R P=2 \times$ Area of $\triangle O Q P$
$=2 \times 30=60 \mathrm{~cm}^{2}$

