

## **Practice Challenge - Subjective**

Subject: Mathematics

Topic : Circles Exam Prep 1

Class: X

1. In Fig. 8.64, PA and PB are tangents from an external point P to a circle with centre O. LN touches the circle at M. Prove that PL+ML=PN+MN.





- 2. From a point P, two tangents PA and PB are drawn to a circle with centre O. If OP = diameter of the circle, show that  $\Delta APB$  is equilateral.
- <sup>3.</sup> If  $\triangle ABC$  is isosceles with AB = AC and C(O,r) is the incircle of the  $\triangle ABC$  touching BC at L, prove that L bisects BC.
- Let s denotes the semi perimeter of a ∆ ABC, in which BC=a, CA=b and AB=c, if a circle touches the sides BC, CA, AB at D,E,F respectively prove that BD = s - b.
- 5. AB is a diameter of a circle and AC is the chord such that  $\angle$  BAC = 30°. If the tangent at C intersects AB extended at D, then BC = BD.

## **Practice Challenge - Subjective**



- 6. Write 'True' or 'False' and justify your answer in each of the following :
  (i) The length of tangents from an external point P on a circle is always greater than the radius of the circle.
  (ii) The length of tangents from an external point P on a circle with centre O is always less than OP.
- 7. In figure. If PQR is the tangent to a circle at Q whose centre is O, AB is a chord parallel to PR and  $\angle BQR = 70^{\circ}$ , then  $\angle AQB$  is equal to





## **Practice Challenge - Subjective**

8. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle is drawn. Then, the area of the quadrilateral PQOR is