Practice Challenge - Objective

Subject: Mathematics
Topic: Constructions Theory
Session 1
Class: X

1. A $\triangle A B C$ with $\mathrm{AB}=6 \mathrm{~cm}, \angle A=30^{\circ}$ and $\angle B=60^{\circ}$ is given. Another $\Delta A B^{\prime} C^{\prime}$ similar to $\triangle A B C$ with $\mathrm{AB}^{\prime}=8 \mathrm{~cm}$ is constructed as shown below:

The reason why we don't construct a ray making an acute angle at A is
A. $\triangle A B C$ is a right-angled triangle.
B. Length of $A B^{\prime}$ is given.
C. Scale is not given.
D. $\angle A=30^{\circ}$
2. What will the ratio $A B: A C$ be if C divides the line segment $A B$ in the ratio $5: 12$?
A. $5: 12$
B. $17: 12$
C. $12: 17$
D. $17: 5$

Practice Challenge - Objective

3.

You are given a circle with radius 'r' and centre ' O^{\prime}. You are asked to draw a pair of tangents which are inclined at an angle of 60° with each other, from a point E.
Refer to the figure and select the option which would lead you to the required construction. The distance d is the distance OE.

N
A. Using trigonometry, arrive at $d=r$ and mark E.
B. Construct the $\triangle \mathrm{MNO}$ as it is equilateral triangle.
C. Mark M and N on the circle such that $\angle \mathrm{MOE}=60^{\circ}$ and $\angle \mathrm{NOE}=60^{\circ}$.
D. Mark M and N on the circle such that $\angle \mathrm{MOE}=120^{\circ}$ and $\angle \mathrm{NOE}=$ 120°.

Practice Challenge - Objective

4. Initial step for constructing a similar triangle of $\triangle A B C$ is given below $\angle C B X$ is a/an:

A. acute angle
B. right angle
C. obtuse angle
D. reflex angle
5.

Match the following based on the construction of similar triangles, if scale factor $\left(\frac{m}{n}\right)$ is

I.	>1	$a)$ The similar triangle is smaller than the original triangle.
$I I . \quad<1$	b) The two triangles are congruent triangles.	
III. $=1$	c) The similar triangle is larger than the original triangle.	

A. $I-c, I I-a, I I I-b$
B. $I-b, I I-a, I I I-c$
C. $I-a, I I-c, I I I-b$
D. $I-a, I I-b, I I I-c$

Practice Challenge - Objective

6. Find the ratio in which D divides side $B C$ if:

$$
\frac{\operatorname{Ar}(\triangle A B D)}{\operatorname{Ar}(\triangle A D C)}=\frac{2}{3}
$$

A. $4: 3$
B. $4: 5$
C. $2: 3$
D. $1: 1$
7. For a scale factor greater than 1 , the ratio of the area of triangle to be constructed to the area of the given triangle will always be
A. Equal to 1
B. Equal to 2
C. Less than 1
D. Greater than 1

Practice Challenge - Objective

8.

Which of the following is not true for a point P on the circle?
A. Perpendicular to the tangent passes through the centre
B. There are 2 tangents to the circle from point P
C. Only 1 tangent can be drawn from point P
D. None of these
9. In the figure below, two tangents are drawn from a point P to a circle meeting it at points A and C .
If $\angle A O C=120^{\circ}$, what is the value of $\angle A P C$?

A. 120°
B. 30°
C. 60°
D. 80°

Practice Challenge - Objective

10.

For which of the following can a perpendicular bisector be drawn?
A. Line
B. Ray
C. Line segment
D. Both Line and Ray

