MATHEMATICS

BBYJU'S

POST CLASS NOTES

Constructions

1. Division of a line segment in the given ratio
2. Construction of similar triangles
3. Construction of pair of tangents
4. Division of a line Segment in the Given Ratio

Let 's divide a line segment of length 16 cm in the ratio 5:3.

Step 2:

Draw a ray $A X$ making an acute angle with $A B$.

Step 3:

Locate $8(=5+3)$ points on ray $A X$ such that, $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=\ldots=A_{7} A_{8}$.

Step 5:

Draw a line parallel to $B A_{8}$ from point A_{5} (by making an angle equal to $\angle A A_{8} B$) intersecting $A B$ at the point C.

2. Construction of Similar Triangles

2.1 Scale Factor > 1

To construct a triangle whose sides are $\frac{5}{2}$ times the corresponding sides of the given $\triangle A B C$.

Step 1:

Draw given $\triangle A B C$.

Step 2:
Draw any ray AX making an acute angle with $A B$ on the side opposite of the vertex C.

Step 3:

Locate 5 (the greater part of 5 and 2 in $\frac{5}{2}$) points $A_{1}, A_{2}, A_{3}, A_{4}$ and A_{5} on $A X$ such that $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}$.

Step 5:

Extend $A B$ to rights side of point B.

Step 6:

Draw a line through A_{5} parallel to $A_{2} B$ which intersects $A B$ at B.

Step 7:

Produce the line $A C$ to the right of point C.

Step 8:

Draw a line through B^{\prime} parallel to the line $B C$ to intersect $A C$ at C^{\prime}.

The $\triangle \mathbf{A B}^{\prime} \mathbf{C}^{\prime}$ has sides that are $\frac{5}{2}$ times the corresponding sides of the given $\triangle A B C$.

2.2 Scale Factor < 1

To construct a triangle whose sides are $\frac{2}{5}$ times the corresponding sides of the given $\triangle A B C$.

Same first 3 steps as the construction of triangle with $S F>1$.

Step 4:
 Join $A_{5} B$.

Step 5:

Draw a line through A_{2} parallel to $A_{5} B$ to intersect $A B$ at B.

Step 6:

Draw a line through B^{\prime} parallel to the line $B C$ to intersect $A C$ at C^{\prime}.

The $\triangle \mathbf{A B}^{\prime} \mathbf{C}^{\prime}$ has sides that are $\frac{2}{5}$ times the corresponding sides of the given $\triangle A B C$.

3. Construction of Pair of Tangents

To construct the tangents to a circle from a point (say P) outside it.

Given: A point P outside the circle of centre 0 .

Step 1:
Join PO and draw a perpendicular bisector of PO in order to locate its midpoint. Lets say M is the midpoint of $P O$.

Step 2:

Taking M as centre and $M O$ (or MP) as radius, draw a circle. Let it intersect the given circle at the points Q and R.

Step 3:
 Join PQ and PR.

Mind Map

