Practice Challenge - Subjective

Subject: Mathematics

Topic : Constructions Theory Session 1

1. Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct a pair of tangents to the circle and measure their lengths.

Steps of Construction:
Step I: With O as a centre and radius equal to 6 cm , a circle is drawn.
Step II: A point P at a distance of 10 cm from the centre O is taken. OP is joined.

Step III: Perpendicular bisector of OP is drawn and it intersects OP at M.
Step IV: With M as a centre and OM as a radius, a circle is drawn intersecting the previous circle at Q and R.
Step V: PQ and PR are joined.
Thus, $P Q$ and $P R$ are the tangents to the circle.
On measuring the length, tangents are equal to 8 cm .
$P Q=P R=8 \mathrm{~cm}$.
Justification:
OQ is joined.
$\angle P Q O=90^{\circ}$ (Angle in the semi-circle)
$\therefore O Q \perp P Q$
Therefore, OQ is the radius of the circle then PQ has to be a tangent of the circle.
Similarly, PR is a tangent of the circle.

Practice Challenge - Subjective

2. Let ABC be a right triangle in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\angle B=90^{\circ}$. $B D$ is the perpendicular from B on $A C$. A circle through B, C, D is drawn. Construct the tangents from A to this circle.
Steps of Construction:
Step I: $\triangle A B C$ is drawn.
Step II: Perpendicular to $A C$ is drawn to point B which intersected it at D.

Step III: With O as a center
and $O C$ as a radius, a circle is drawn. The circle through B, C, D is drawn. Step IV: OA is joined and a circle is drawn with diameter OA which intersected the previous circle at B and E.
Step V: AE is joined.
Thus, $A B$ and $A E$ are the required tangents to the circle from A. Justification:
$\angle O E A=90^{\circ}$ (Angle in the semi-circle)
$\therefore O E \perp A E$
Therefore, OE is the radius of the circle then AE has to be a tangent of the circle.
Similarly, $A B$ is another tangent to the circle.

Practice Challenge - Subjective

3. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm . Then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

Steps of Construction:
Step I: $B C=3 \mathrm{~cm}$ is drawn.
Step II: At B, A ray making an angle of 90° with $B C$ is drawn.
Step III: With B as centre and radius equal to 4 cm , an arc is made on the previous ray intersecting it at point A.

Step IV: AC is joined to form $\triangle A B C$

Step V: A ray $B X$ is drawn making an acute angle with $B C$ opposite to vertex A.

Step VI: 5 points $B_{1}, B_{2}, B_{3}, B_{4} a n d B_{5}$ are marked at equal distances on BX .
Step VII: $B_{3} C$ is joined $B_{5} C^{\prime}$ is made parallel to $B_{3} C$.
Step VIII: $A^{\prime} C^{\prime}$ is drawn parallel to AC.
Thus, $\Delta A^{\prime} B C^{\prime}$ is the required triangle.

Practice Challenge - Subjective

4. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are 1.5 times the corresponding sides of the isosceles triangle.

Steps of Construction:
Step I: $B C=8 \mathrm{~cm}$ is drawn.
Step II: Perpendicular bisector of $B C$ is drawn and it intersects $B C$ at O.

on the perpendicular bisector of $B C$.

Step IV: $A B$ and $A C$ are joined to form $\triangle A B C$.

Step V: A ray BX is drawn making an acute angle with BC opposite to vertex A.

Step VI: 3 points B_{1}, B_{2} and B_{3} are marked on BX .
Step VII: B_{2} is joined with C to form $B_{2} C$.
Step VIII: $B_{3} C^{\prime}$ is drawn parallel to $B_{2} C$ and $C^{\prime} A^{\prime}$ is drawn parallel to CA.
Thus, $A^{\prime} B C^{\prime}$ is the required triangle formed.
Justification:
$\triangle A B^{\prime} C^{\prime} \sim \triangle A B C$ by AA similarity condition.
$\therefore \frac{A B}{A B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{A C}{A C^{\prime}}$
Also,
$\frac{A B}{A B^{\prime}}=\frac{A A_{2}}{A A_{3}}=\frac{2}{3}$
$\Rightarrow A B^{\prime}=\frac{3}{2} A B, B^{\prime} C^{\prime}=\frac{3}{2}$
$B C$ and $A C^{\prime}=\frac{3}{2} A C$

Practice Challenge - Subjective

5. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

Steps of Construction:
Step I: $A B=6 \mathrm{~cm}$ is drawn.
Step II: With A as a centre and radius equal to 4 cm , an arc is drawn.
Step III: Again, with B as a centre and radius equal to 5 cm an arc is drawn on the same side of $A B$ intersecting the previous arc at C.
Step IV: AC and BC are joined to form $\triangle A B C$.
Step V: A ray $A X$ is drawn making an acute angle with $A B$ below it.
Step VI: 5 equal points (sum of the ratio $=2+3=5$) is marked on $A X$ as $A_{1}, A_{2} \ldots A_{5}$
Step VII: $A_{5} B$ is joined. $A_{2} B^{\prime}$ is drawn parallel to $A_{5} B$ and $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is drawn parallel to BC.
$\Delta A B^{\prime} C^{\prime}$ is the required triangle

Justification:
$\angle A($ Common $)$
$\angle C=\angle \mathrm{C}^{\prime}$ and $\angle B=\angle \mathrm{B}^{\prime}$ (corresponding angles)
Thus $\triangle A B^{\prime} C^{\prime} \sim \Delta A B C$ by AAA similarity condition
From the figure,
$\frac{A B^{\prime}}{A B}=\frac{A A 2}{A A 5}=\frac{2}{3}$
$A B^{\prime}=\frac{2}{3} A B$
$A C^{\prime}=\frac{2}{3} A C$

Practice Challenge - Subjective

6. Draw a line segment of length 7.6 cm and divide it in the ratio $5: 8$ Measure the two parts.
1) Draw a line segment $A B=7.6 \mathrm{~cm}$.
2) Draw a ray $A X$ making an acute angle $\angle B A X$ along with $A B$.

3) On AX make $5+8$ i.e. 13 equal parts and mark them as
$A_{1}, A_{2}, A_{3}, A_{4}, \ldots A_{13}$
4) Join B to A_{13}. From A_{5} draw $A_{5} C \| A_{13} B$.
C is the required point of division and $A C$: $C B=5: 8$.
On measuring, we get
$A C=3.1 \mathrm{~cm}$,
$C B=4.5 \mathrm{~cm}$
Justification
$A_{5} C \| A_{13} B$
$\frac{A_{5} C}{A_{5} A_{13}}=\frac{A C}{C B}$
[Using basic proportionality theorem]
But $\frac{A_{5} C}{A_{5} A_{13}}=\frac{5}{8}$
This shows that C divides $A B$ in the ratio $5: 8$.

Practice Challenge - Subjective

7. Draw an isosceles triangle $A B C$ in which $A B=A C=6 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$ Construct a triangle PQR similar to $\triangle A B C$ in which $\mathrm{PQ}=8 \mathrm{~cm}$, Also justify the construction.

Thinking process
(i)Here, for making two similar triangles with one vertex is base We assume that In $\triangle A B C$ and $\triangle P Q R$, vertex $\mathrm{B}=$ vertex Q .
(ii) In $\triangle A B C$ and $\triangle P Q R$, vertex $\mathrm{B}=$ vertex Q .

So, we get the required scale factor.
Now, construct a $\triangle A B C$ and then a $\triangle P B R$, similar to $\triangle A B C$ whose sides are $\frac{P Q}{A B}$ of the corresponding sides of the $\triangle A B C$.

Let $\triangle P Q R$ and $\triangle A B C$ are similar triangle, then its scale factor between the corresponding sides is $\frac{P Q}{A B}=\frac{8}{6}=\frac{4}{3}$

Steps of construction

1. Draw a line segment $B C=5 \mathrm{~cm}$
2. Construct $O Q$ the perpendicular bisector of line segment $B C$ meeting $B C$ at P^{\prime}
3. Taking B and C as centers draw two arcs of equal radius 6 cm intersecting each other at A
4. Join BA and CA . So. $\triangle A B C$ is the required isosceles triangle.

5. From B, draw a ray

BX making an acute $\angle C B X$
6. Locate four points $B_{1}, B_{2}, B_{3}, B_{4}$ on $B X$ Such that $B B_{1} \equiv B_{1} B_{2} \equiv B_{3} B_{4}$

Practice Challenge - Subjective

7. Join $B_{3} C$ and from B_{4} draw a line $B_{4} R \| B_{3} C$ intersecting the extended line segment $B C$ at R.
8. From point R draw $R P \| C A$ meeting BA produced at p

Then, $\triangle P B R$ is the required triangle.
Justification
$\because B_{4} R \| B_{3} C$
$\therefore \frac{B C}{C R}=\frac{3}{1}$
Now $\frac{B R}{B C}=\frac{B C+C R}{B C}$
$=1+\frac{C R}{B C}=1+\frac{1}{3}=\frac{4}{3}$
Also $R P \| C A$
$\therefore \triangle A B C \cong \triangle P B R$
And $\frac{P B}{A B}=\frac{R P}{C A}=\frac{B R}{B C}=\frac{4}{3}$
Hence the new triangle is similar to the given triangle whose sides are $\frac{4}{3}$
times of the corresponding sides of the isosceles $\Delta A C$.

Practice Challenge - Subjective

8. Draw a circle of radius 4 cm . Construct a pair of tangents to it, the angle between which is 60°. Also justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents.

In order to draw the pair of tangents, we follow the following steps
Steps of construction

1. Take a point O on the plane of the paper and draw a circle of radius $O A=$ 4 cm
2. Produce $O A$ to B such that $O A=A B=4 \mathrm{~cm}$
3. Taking A as the center draw a circle of radius $O A=A B=4 \mathrm{~cm}$

Suppose it cuts the circle drawn in step 1 at P and Q
4. Join BP and BQ to get desired tangents.

Justification in $\triangle O A P$, we have
$O A=O P=4 \mathrm{~cm} \quad(\because$ Radius $)$

Also, AP $=4 \mathrm{~cm} \quad(\because$ Radius of circle with centre $)$
$\Delta O A P$ is equilateral
$\Rightarrow \angle P A O=60^{\circ}$
$\Rightarrow \angle B A P=120^{\circ}$

In $\Delta B A P$ we have
$\mathrm{BA}=\mathrm{AP}$ and $\angle B A P=120^{\circ}$
$\therefore \angle A B P=\angle A P B=30^{\circ}$
$\Rightarrow \angle P B Q=60^{\circ}$

Practice Challenge - Subjective

Steps of construction

1. Take a point O on the plane of the paper and draw a circle with centre O and radius $O A=4 \mathrm{~cm}$
2. AT O construct radii OA and OB such that to $\angle A O B$ equal 120° i.e supplement of the angle between the tangents.
3. Draw perpendicular to $O A$ and $O B$ at A and B respectively Suppose these Perpendicular intersects at P. Then PA and PB are required tangents.

Justification

In quadrilateral OAPB we have
$\angle O A P=\angle O B P=90^{\circ}$
And $\angle A B O=120^{\circ}$
$\therefore \angle O A P+\angle O B P+\angle A O B+\angle A P B=360^{\circ}$
$\angle A P B=360^{\circ}-\left(90^{\circ}+90^{\circ}+120^{\circ}\right)$
$=360^{\circ}-300^{\circ}=60^{\circ}$

