Practice Challenge - Objective

Subject: Mathematics
Topic : Quadratic Equations Exam
Prep 1
Class: X

1. The number of common roots of the equations
$x^{2}-7 \mathrm{x}+10=0$ and $x^{2}-10 \mathrm{x}+16=0$ is
x A. 0
B. 1
x
C. 2
\times
D. 3

Step 1:- For, $x^{2}-7 \mathrm{x}+10=0$, roots are 2 and 5
Step 2:- For, $x^{2}-10 x+16=0$, roots are 2 and 8 .
Step 3:- Thus common root is only one, i.e. is 2 .

Practice Challenge - Objective

2.

Let $f(x)=a x^{2}+b x+c$. Then, match the following.

a. Sum of roots of $\mathrm{f}(\mathrm{x})=0$	$1 .-\frac{b}{a}$
b. Product of roots of $\mathrm{f}(\mathrm{x})=0$	$2 \cdot \frac{c}{a}$
c. Roots of $\mathrm{f}(\mathrm{x})=0$ are real and distinct	$3 . b^{2}-4 a c=0$
d. Roots of $\mathrm{f}(\mathrm{x})=0$ are real and identical.	$4 . b^{2}-4 a c>0$

× A. $a-2, b-1, c-3 . d-4$
B. $a-1, b-2, c-4, d-3$
x
C. $a-3, c-4, b-2, d-1$

X D. $a-1, b-2, c-3, d-4$
For $\mathrm{f}(\mathrm{x})=a x^{2}+b x+c$,
a. Sum of roots of $f(x)=0$ is equal to $\frac{-b}{a}$.
b. Product of roots of $f(x)=0$ is equal to $\frac{c}{a}$
c. Roots of $f(x)=0$ are real and distinct, if $D=b^{2}-4 a c>0$
d. Roots of $\mathrm{f}(\mathrm{x})=0$ are real and equal, if $\mathrm{D}=b^{2}-4 a c=0$

Practice Challenge - Objective

3. Find the value of k for which $x^{2}-4 x+k=0$ has coincident roots.
\times A. 0
x B. -2C. 4
x D. -4
On comparing $x^{2}-4 x+k=0$ with standard form $a x^{2}+b x+c=0$, we get
$a=1, b=-4$ and $c=k$

Now, discriminant, $\mathrm{D}=b^{2}-4 a c$
$\Rightarrow D=(-4)^{2}-4(1) k=16-4 k$
The roots of quadratic equation are co-incident only when $D=0$.

$$
\begin{aligned}
& \Rightarrow 16-4 k=0 \\
& \Rightarrow k=4
\end{aligned}
$$

Practice Challenge - Objective

4.

Shriya and Vidya solved a quadratic equation. In solving it, Shriya made a mistake in the constant term and obtained the roots as $5,-3$ while Vidya made a mistake in the coefficient of x and obtained the roots as $1,-3$. The correct roots of the equation are
\times A. 1,3
(v)
B. $-1,3$
\times
C. $-1,-3$
x D. $1,-1$
Shriya made a mistake in constant term only,
Thus, the sum of the roots was correct.
Sum of roots $=2=-\frac{b}{a}$
Vidya made a mistake only in coefficient of x
So the product of roots was correct.
Thus,
Product of roots $=-3=\frac{c}{a}$
Hence, the correct quadratic equation is $x^{2}-2 x-3=0$
The roots of the correct quadratic equation are $-1,3$.

Practice Challenge - Objective

5.

What will be the condition for $\left(a^{2}-9\right) x^{2}+b x+c=0$ to be a quadratic equation?
x A. $a \neq 0 ; a, b, c$ are real

X B. $a=-3 ; a, b$, care real
x C. $a=3 ; a, b, c$ are real
(D) $a \neq \pm 3 ; a, b, c$ are real
Standard form of a quadratic equation is $a x^{2}+b x+c=0$, with the conditions that a, b, c are real numbers and $a \neq 0$.

So considering the same here, $\left(a^{2}-9\right)$ should not be equal to zero.
$\Rightarrow a^{2}-9 \neq 0$
$\Rightarrow a^{2} \neq 9$
$\Rightarrow a \neq \pm 3$
So, the condition for the given equation to be a quadratic equation is that a, b, c are real numbers and $a \neq \pm 3$.

Practice Challenge - Objective

6. Which of the following is not a quadratic equation?
x A. $(x-2)^{2}+1=2 x-3$
\times
B. $(x+2)^{3}=x^{3}-4$
(v)
C. $x(x+1)+8=(x+2)(x-2)$
\times
D. $x(2 x+3)=\left(x^{2}+1\right)$
(a) $(x-2)^{2}+1=(2 x-3)$
$x^{2}-4 \mathrm{x}+4+1=2 \mathrm{x}-3$
$x^{2}-4 \mathrm{x}+4+1-2 \mathrm{x}+3=0$
$x^{2}-6 x+8=0$
This is a quadratic equation.
(b) $(x+2)^{3}=x^{3}-4$
$x^{3}+6 x^{2}+12 x+8=x^{3}-4$
$6 x^{2}+12 x+12=0$
This is a quadratic equation.
(c) $x(x+1)+8=(x+2)(x-2)$
$x^{2}+\mathrm{x}+8=x^{2}-4$
$x+12=0$
This is not a Quadratic equation.
(d) $x(2 x+3)=x^{2}+1$
$2 x^{2}+3 \mathrm{x}=x^{2}+1$
$x^{2}+3 x-1=0$
This is a quadratic equation.

Practice Challenge - Objective

7.

Write $x^{2}+10 \mathrm{x}+16=0$ in the form $x^{2}+\mathrm{px}+\mathrm{qx}+16=0$ such that $\mathrm{pxq}=16$
A. $p=8, q=2$
x
B. $p=-8, q=-2$
\times
C. $p=2, q=6$
\times
D. $p=-2, q=-8$

Comparing $x^{2}+10 \mathrm{x}+16=0$ to $\mathrm{a} x^{2}+\mathrm{bx}+\mathrm{c}=0$, we have $\mathrm{a}=1, \mathrm{~b}=10$ and $\mathrm{c}=16$
Now, we need to find two numbers whose product is 16 and whose sum is 10

Pairs of numbers whose product is 16
1,16
$-1,-16$
2,8
$-2,-8$
4,4
$-4,-4$
Of these pairs, the pair that gives the sum 10 is the third pair
Identifying the pair, we rewrite the given quadratic equation as
$x^{2}+10 \mathrm{x}+16=x^{2}+2 \mathrm{x}+8 \mathrm{x}+16$
$x^{2}+2 \mathrm{x}+8 \mathrm{x}+16=0$

Practice Challenge - Objective

8.

The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm , find the other two sides (in cm).
x
A. 2,5
\times
B. 5,3
(C. 7,2
(D) 12,5

Practice Challenge - Objective

Let the base $=\mathrm{xcm}$
Given that the altitude of a right triangle is 7 cm less than its base
Altitude is $=x-7 \mathrm{~cm}$
Given that hypotenuse $=13 \mathrm{~cm}$
Applying Pythagoras theorem,
base ${ }^{2}+$ altitude $^{2}=$ hypotenuse ${ }^{2}$
Substituting the values, we get
$\Rightarrow \quad x^{2}+(x-7)^{2}=13^{2}$
$\Rightarrow \quad x^{2}+x^{2}+49-14 \mathrm{x}=169$
$\Rightarrow 2 x^{2}-14 x+49-169=0$
$\Rightarrow 2 x^{2}-14 x-120=0$
Dividing with 2 on both sides the above equation simplifies to

$$
\begin{aligned}
& \Rightarrow \quad x^{2}-7 \mathrm{x}-60=0 \\
& \Rightarrow \quad x^{2}-12 \mathrm{x}+5 \mathrm{x}-60=0 \\
& \Rightarrow \quad \mathrm{x}(\mathrm{x}-12)+5(\mathrm{x}-12)=0 \\
& \Rightarrow \quad(\mathrm{x}-12)(\mathrm{x}+5)=0 \\
& \Rightarrow \mathrm{x}-12=0 \text { or } \mathrm{x}+5=0 \\
& \Rightarrow \quad \mathrm{x}=12 \text { or } \mathrm{x}=-5
\end{aligned}
$$

Length cannot be negative so x cannot be equal to -5
base $x=12 \mathrm{~cm}$; altitude $=12-7=5 \mathrm{~cm}$

Practice Challenge - Objective

9. What are the roots of the quadratic equation $(x+2)^{2}-16=0$?A. $x=2$ or -6
x
B. $x=-2$ or 6
x
C. $x=2$ or 6
(D. $x=-2$ or -6
$(x+2)^{2}-16=0$
$(x+2)^{2}=16$
$(x+2)=\sqrt{16}$
$(x+2)=+4$ or $(x+2)=-4$
$x=2$ or $x=-6$

Practice Challenge - Objective

10.

During a practice match, a softball pitcher throws a ball whose height can be modeled by the equation $h=-16 t^{2}+24 t+1$, where $\mathrm{h}=$ height in feet and t $=$ time in seconds. How long does it take for the ball to reach a height of 6 feet?
x A. 2.2 and 3.8 secs
x B. 5.4 and 6.2 secs
C. 0.25 and 1.25 secs
\times
D. 7 and 5 secs

Given Height $=6$
$\Rightarrow-16 t^{2}+24 t+1=6$
$\Rightarrow 16 t^{2}-24 t+5=0$
$\Rightarrow 16 t^{2}-4 t-20 t+5=0$
$\Rightarrow 16 t^{2}-4 t-20 t+5=0$
$\Rightarrow 4 t(4 t-1)-5(4 t-1)=0$
$\Rightarrow(4 t-1)(4 t-5)=0$
$t=\frac{1}{4}, \frac{5}{4}$ or $0.25,1.25$

So, at time 0.25 secs and 1.25 secs, the ball will be at a height of 6 feet.

