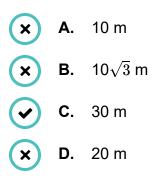


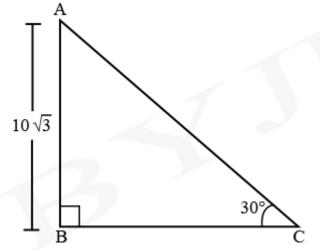
Practice Challenge - Objective D Consider an equilateral ΔABC with sides of 2 units as shown in fig. Let there be a perpendicular dropped from A to side BC cutting BC at D. Now, in $\triangle ABD$ and $\triangle ACD$: AD is common AB = AC (sides of an equilateral ΔABC) and $\angle ADC = \angle ADB = 90^{\circ}$ $\therefore \Delta ABD \cong \Delta ACD \quad (RHS \ congruency)$ $\Rightarrow \angle BAD = \angle CAD \ (corresponding angles of congruent \Delta s)$ $\Rightarrow \angle BAD + \angle CAD = \angle BAC = 60^{\circ}$ $\Rightarrow \angle BAD = \angle CAD = 30^{\circ}$ and $BD = DC = \frac{1}{2}BC = 1$ In $\triangle ABD$, $AB^2 = AD^2 + BD^2$

 $AB^2 = AD^2 + BD^2$ $\Rightarrow 2^2 = 1^2 + AD^2$ $\Rightarrow AD = \sqrt{3}$ $cos(\angle BAD) = cos30^\circ = \frac{AD}{BA} = \frac{\sqrt{3}}{2}$ $Also, cos(\angle ABD) = cos60^\circ = \frac{BD}{AB} = \frac{1}{2}$

^{2.} The height of a tree is $10\sqrt{3}$ m, if a boy looks at the top of the tree with an angle of elevation of 30° , find the distance between the boy and the tree.



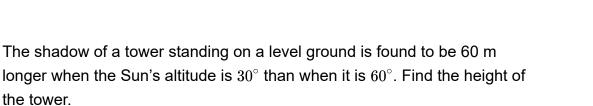
The given figure illustrates the scenario mentioned in the question :

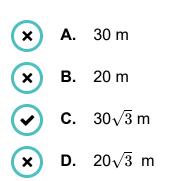


Given, the tree is having a height of $10\sqrt{3}$ m.

So, AB = $10\sqrt{3} m$.

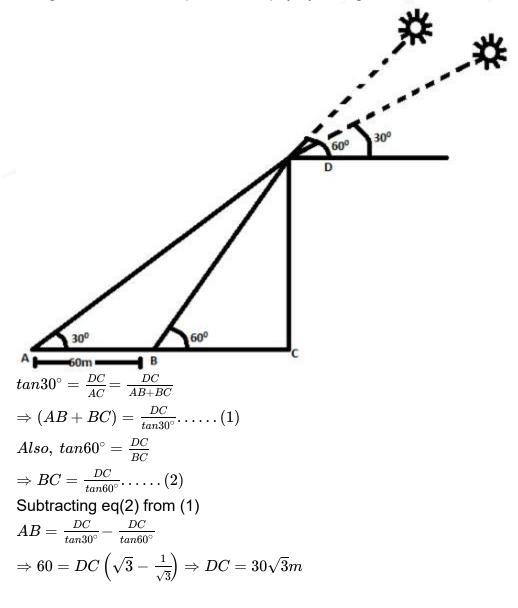
In Triangle ABC, $\tan 30^{\circ} = \frac{AB}{BC} = \frac{1}{\sqrt{3}}$ $\Rightarrow BC = 10\sqrt{3} \times \sqrt{3}$ $\Rightarrow BC = 30 m.$



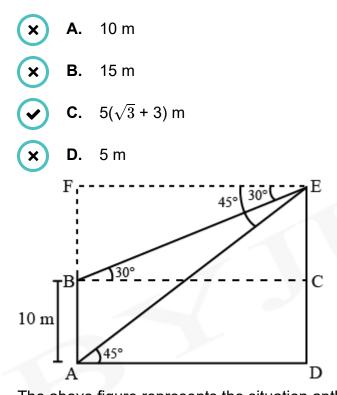


3.

The given situation is represented aptly by the figure below

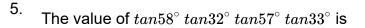


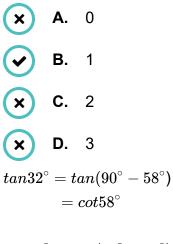
4. The angles of depression of the top and the bottom of a 10 m tall building from the top of a multi-storeyed building are 30° and 45° , respectively. Find the height of the multi-storeyed building.



The above figure represents the situation aptly $\angle CBE = \angle BEF \text{ and } \angle DAE = \angle AEF \text{ (alternate angles)}$ $\tan(\angle EAD) = \tan 45^\circ = \frac{ED}{AD} = \frac{EC+CD}{AD}$ $\Rightarrow AD \times \tan 45^\circ = EC + CD \dots (1)$ $and \tan(\angle EBC) = \tan 30^\circ = \frac{EC}{CB}$ $\Rightarrow CB \times \tan 30^\circ = EC \dots (2)$ Subtracting eq(2) from (1) $\Rightarrow AD \times \tan 45^\circ - CB \times \tan 30^\circ = CD$ $\Rightarrow AD(\tan 45^\circ - \tan 30^\circ) = CD \quad (\because AD = CB)$ $\Rightarrow AD \left(1 - \frac{1}{\sqrt{3}}\right) = 10$ $\Rightarrow AD = 5(3 + \sqrt{3})m$ $\Rightarrow ED = AD(\tan 45^\circ = 1)$

ED is the height of the building.



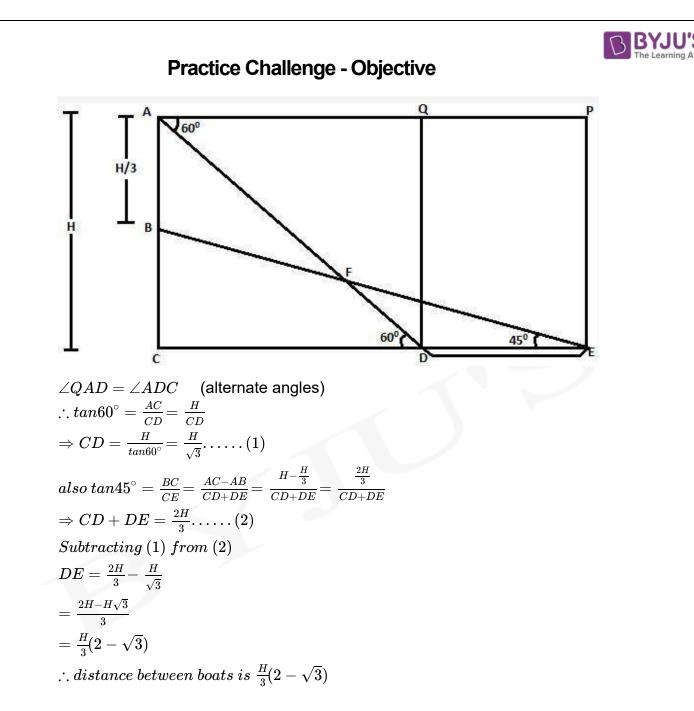


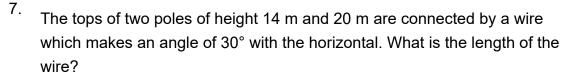
 $tan33^\circ = tan(90^\circ - 57^\circ) \ = cot57^\circ$

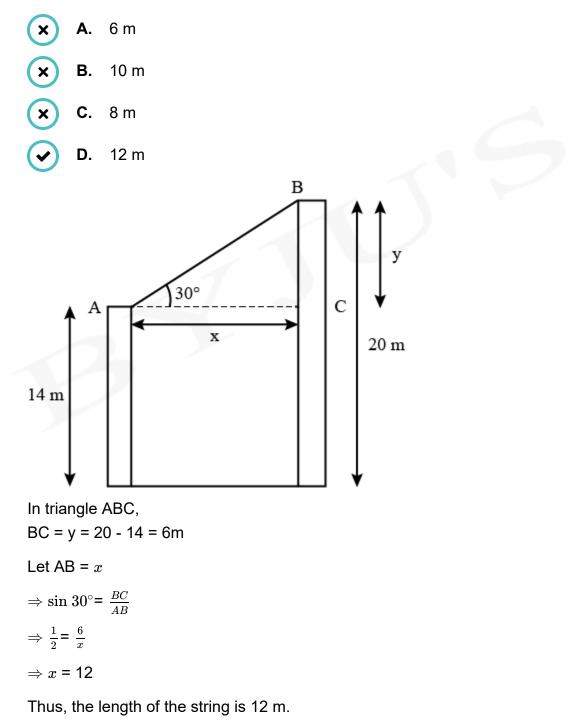
Therefore, $tan58^{\circ} tan32^{\circ} tan57^{\circ} tan33^{\circ}$ = $tan58^{\circ} cot58^{\circ} tan57^{\circ} cot57^{\circ}$ = $tan58^{\circ} \frac{1}{tan58^{\circ}} tan57^{\circ} \frac{1}{tan57^{\circ}}$ [since cot A= $\frac{1}{tanA}$] =1

6. From the top of a lighthouse H m tall, a person observes the angle of depression of a boat to be 60° . Another person who is $\frac{H}{3}$ m from the top of a lighthouse observes the angle of depression of another boat directly behind the first boat to be 45° . Find the distance between the two boats.

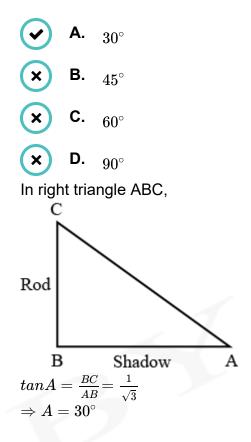
(Take
$$\sqrt{3} = 1.7$$
)
X A. $\frac{H}{10}$
X B. $\frac{H}{3}(2 - \sqrt{3})$
X C. 0.6 H
X D. 1.7H





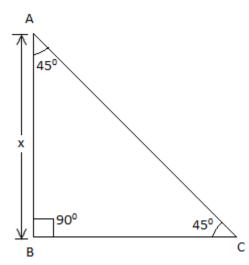


8. The ratio of the length of a rod and its shadow is $1:\sqrt{3}$. The angle of elevation of the sun is ______.



9. In the given figure, ABC is an isosceles right angle triangle, right angled at B. The ratio of the sides AB: BC : AC is _____.





Let us assume the length of side AB of the triangle to be x units. Applying trignometric ratios to the sides, we get :

$$sin 45^{\circ} = \left(\frac{x}{AC}\right)$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \left(\frac{x}{AC}\right)$$

$$\Rightarrow AC = x\sqrt{2} \dots (i)$$

Similarly,

$$tan 45^{\circ} = \left(\frac{x}{BC}\right)$$

$$\Rightarrow 1 = \left(\frac{x}{BC}\right)$$

$$\Rightarrow BC = x \dots (ii)$$

So, the ratios of the sides of the triangle with angles

$$45^{\circ}, 45^{\circ} \& 90^{\circ} = x : BC : AC$$

$$= x : x : x\sqrt{2}(from (i)\&(ii))$$

$$= 1 : 1 : \sqrt{2}$$

An alternate and shortcut method of solving this question is:

For the given triangle, as two angles are equal; the two sides opposite to these angles will also be equal.

And as the third angle is 90° , the triangle is right - angled triangle.

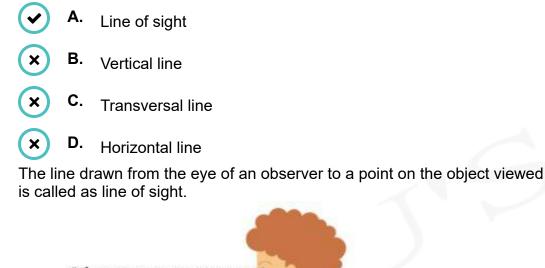
Let us assume the length of the equal sides is equal to x units.

So, length of the hypotenuse = $\sqrt{(x^2 + x^2)} = x\sqrt{2}$

So, Ratio of the sides of the triangle = $x : x : x\sqrt{2}$

 \Rightarrow Ratio of the sides of the triangle = 1 : 1 : $\sqrt{2}$

10. What is the line drawn from the eye of the observer to the the object viewed by the observer?



The dashed line shown is the the line of sight.

0