Practice Challenge - Subjective

Subject: Mathematics
Topic: Some Applications of
Trignometry Exam Prep 1
Class: X

1. Two poles are erected from the ground. The length of the longer pole is 10 m . If the distance between the tips of the poles is 6 m , and the angle of elevation of the tip of the longer pole from that of the shorter pole is 30°, find the length of the second pole.

Refer to the following figure:
$A B$ is the longer pole of length 10 m . ED is the shorter pole. Let the lengths be broken down as shown.

In $\triangle \mathrm{ABE}, \sin 30^{\circ} \Rightarrow \mathrm{x}=3$
Since $x+y=10$ and $x=3, y=7 m$.
Observe that $B C=y=E D=$ length of the shorter pole $=7 \mathrm{~m}$.

Practice Challenge - Subjective

2. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30°.

Let $A B$ be the vertical pole and $A C$ be 20 m long rope tied to point C . In right $\triangle A B C$,

$\sin 30^{\circ}=\frac{A B}{A C}$
$\Rightarrow \frac{1}{2}=\frac{A B}{20}$
$\Rightarrow A B=\frac{20}{2}$
$\Rightarrow A B=10$
Thus, the height of the pole is 10 m .

Practice Challenge - Subjective

3. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m . Find the height of the tree.
Let AC be the broken part of the tree.
\therefore Total height of the tree $=A B+A C$
In right $\triangle A B C$,
$\cos 30^{\circ}=\frac{B C}{A C}$

$\Rightarrow A C=\frac{16}{\sqrt{3}}$
Also, $\tan 30^{\circ}=\frac{A B}{B C}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{A B}{8}$
$\Rightarrow A B=\frac{8}{\sqrt{3}}$
Therefore, the total height of the tree $=A B+A C=\frac{8}{\sqrt{3}}+\frac{16}{\sqrt{3}}=\frac{24}{\sqrt{3}}=8 \sqrt{3} \mathrm{~m}$.

Practice Challenge - Subjective

4. A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.

Let the boy initially stands at point
Y with inclination 30° and then he approaches the building to the point X with inclination 60°.
$\therefore \mathrm{XY}$ is the distance he walked towards the building.
Also, XY = CD
Height of the building $=A Z=30 \mathrm{~m}$
$A B=A Z-B Z=(30-1.5)=28.5 m$
As per the question,
In right $\triangle \mathrm{ABD}$,
$\tan 30^{\circ}=\frac{A B}{B D}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{28.5}{B D}$
$\Rightarrow B D=28.5 \sqrt{3} m$
Also,
In right $\triangle A B C$,
$\tan 60^{\circ}=\frac{A B}{B C}$
$\Rightarrow \sqrt{3}=\frac{28.5}{B C}$
$\Rightarrow B C=\frac{28.5}{\sqrt{3}}=\frac{28.5 \sqrt{3}}{3} \mathrm{~m}$
$\therefore X Y=C D=B D-B C$
$=\left(28.5 \sqrt{3}-\frac{28.5 \sqrt{3}}{3}\right)$
$=28.5 \sqrt{3}\left(1-\frac{1}{3}\right)$
$=28.5 \sqrt{3} \times \frac{2}{3}$
$=\frac{57}{\sqrt{3}}$
$=19 \sqrt{3} \mathrm{~m}$
Thus, the distance boy walked towards the building is $\frac{19}{\sqrt{3}} \mathrm{~m}$.

Practice Challenge - Subjective

5. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal.

Here, $A B$ is the height of the tower and $B C$ is the width of canal.
$C D=20 \mathrm{~m}$
As per question,
In right $\triangle A B D$,
$\tan 30^{\circ}=\frac{A B}{B D}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{A B}{(20+B C)}$
$\Rightarrow A B=\frac{(20+B C)}{\sqrt{3}}$.
Also,
In right $\triangle A B C$,
$\tan 60^{\circ}=\frac{A B}{B C}$
$\Rightarrow \sqrt{3}=\frac{A B}{B C}$
$\Rightarrow A B=\sqrt{3} B C \ldots(i i)$
From equation (i) and (ii)
$A B=\sqrt{3} B C=\frac{(20+B C)}{\sqrt{3}}$
$\Rightarrow 3 B C=20+B C$
$\Rightarrow 2 B C=20 \Rightarrow B C=10 \mathrm{~m}$
Putting the value of $B C$ in equation (ii)
$A B=10 \sqrt{3} \mathrm{~m}$
Thus, the height of the tower is $10 \sqrt{3} \mathrm{~m}$ and the width of the canal is 10 m .

Practice Challenge - Subjective

6. From the top of a 7 m high building, the angle of elevation of the top a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

Let $A B$ be the building of height 7 m and EC be the height of tower.
A is the point from where elevation of tower is 60° and the angle of depression of its foot is 45°.

Also, $C D=A B=7 \mathrm{~m}$ and $B C=A D$
According to question,
In right $\triangle A B C$,
$\tan 45^{\circ}=\frac{A B}{B C}$
$\Rightarrow 1=\frac{7}{B C}$
$\Rightarrow B C=7 m=A D$
Also,
In right $\triangle A D E$,
$\tan 60^{\circ}=\frac{D E}{A D}$
$\Rightarrow \sqrt{3}=\frac{D E}{7}$
$\Rightarrow D E=7 \sqrt{3} m$
Height of the tower $=E C=D E+C D=(7 \sqrt{3}+7) m=7(\sqrt{3}+1) m$

Practice Challenge - Subjective

7. A window of a house is h m above the ground. Form the window, the angles of elevation and depression of the top and the bottom of another house situated on the opposite side of the lane are found to be α and β, respectively. Prove that the height of the other house is $h(1+\tan \alpha \cot \beta) m$ Let the height of the other house $=\mathrm{OQ}=\mathrm{H}$

And, $\mathrm{OB}=\mathrm{MW}=\mathrm{x} \mathrm{m}$

Given that, height of the first house $=\mathrm{WB}=\mathrm{h}=\mathrm{MO}$
And $\angle Q W M=\alpha, \angle O W M=\beta=\angle W O B$
[alternate angle]
Now, in $\triangle W O B, \tan \beta=\frac{W B}{O B}=\frac{h}{x}$ (window)
$\Rightarrow x=\frac{h}{\tan \beta} \ldots \ldots$ (i)
And in $\triangle Q W M, \tan \alpha=\frac{Q M}{W M}=\frac{O Q-M O}{W M}$
$\Rightarrow \tan \alpha=\frac{H-h}{x}$
$\Rightarrow x=\frac{H-h}{\tan \alpha}$.

Practice Challenge - Subjective

From Eq. (i) and (ii),

$$
\frac{h}{\tan \beta}=\frac{H-h}{\tan \alpha}
$$

Practice Challenge-Subjective

$\Rightarrow h \tan \alpha=(H-h) \tan \beta$
$\Rightarrow h \tan \alpha=H \tan \beta-h \tan \beta$
$\Rightarrow H \tan \beta=h(\tan \alpha+\tan \beta)$
$\therefore H=h\left(\frac{\tan \alpha+\tan \beta}{\tan \beta}\right)$
$=h\left(1+\tan \alpha \cdot \frac{1}{\tan \beta}\right)=h(1+\tan \alpha \cdot \cot \beta) \quad\left[\because \cot \theta=\frac{1}{\tan \theta}\right]$
Hence, the required height of the other house is $h(1+\tan \alpha \cdot \cot \beta)$

Practice Challenge - Subjective

8. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the distance travelled by the balloon during the interval.

Let the initial position of the balloon be A and final position be B.
Height of balloon above the girl height $=88.2 m-1.2 m=87 m$
Distance travelled by the balloon $=D E=C E-C D$
As per question,

$\tan 30^{\circ}=\frac{B E}{C E}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{87}{C E}$
$\Rightarrow C E=87 \sqrt{3} m$
Also,
In right $\triangle A D C$,
$\tan 60^{\circ}=\frac{A D}{C D}$
$\Rightarrow \sqrt{3}=\frac{87}{C D}$
$\Rightarrow C D=\frac{87}{\sqrt{3}} m=29 \sqrt{3} m$
Distance travelled by the balloon
$=D E=C E-C D=(87 \sqrt{3}-29 \sqrt{3}) m=29 \sqrt{3}(3-1) m=100.45 \mathrm{~m}$

