Mock Board Exam

Mathematics

Solutions

SECTION - A

1. $\int \cos ^{4} x d x=\int\left(\cos ^{2} x\right)^{2} d x$

$$
\begin{aligned}
& =\int\left\{\frac{1+\cos 2 x}{2}\right\}^{2} d x \\
& =\frac{1}{4} \int\left\{1+2 \cos 2 x+\cos ^{2} 2 x\right\} d x \\
& =\frac{1}{4} \int\left\{1+2 \cos 2 x+\frac{1+\cos 4 x}{2}\right\} d x \\
& =\frac{1}{4} \int\left\{\frac{3}{2}+2 \cos 2 x+\frac{1}{2} \cos 4 x\right\} d x \\
& =\frac{1}{4}\left\{\frac{3}{2} x+2 \frac{\sin 2 x}{2}+\frac{1}{2} \frac{\sin 4 x}{4}\right\}+c
\end{aligned}
$$

[1]
[1]

OR

$$
\begin{align*}
I & =\int \frac{d x}{\sqrt{2-4 x+x^{2}}} \\
& =\int \frac{d x}{\sqrt{(x-2)^{2}-(\sqrt{2})^{2}}}=\int \frac{d y}{\sqrt{y^{2}-(\sqrt{2})^{2}}} ;[\text { Put } x-2=y] \tag{1}
\end{align*}
$$

$$
\left.=\log \mid y+\sqrt{y^{2}-2}\right) \left\lvert\,+c\left(\text { using } \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c\right)\right.
$$

$$
\begin{equation*}
\left.=\log \mid(x-2)+\sqrt{x^{2}-4 x+2}\right) \mid+c \tag{1}
\end{equation*}
$$

2. $\frac{d y}{d x}+\frac{1}{x} \cdot y=1$

Above equation is first order linear differential equation.
Integrating factor (I.F.) $=e^{\int \frac{1}{x} d x}=e^{\ln x}=x$
Multiply by x on both side of DE
$x \frac{d y}{d x}+y=x$

$$
\begin{align*}
\frac{d}{d x}(x y) & =x \Rightarrow \int d(x y)=\int x d x \\
x y & =\frac{x^{2}}{2}+c \tag{1}
\end{align*}
$$

3. $|\vec{a} \times \vec{b}|=35$

$$
\begin{array}{ll}
\Rightarrow & |\vec{a}||\vec{b}| \sin \theta=35 \\
\Rightarrow & \sin \theta=\frac{35}{\sqrt{26} \times 7} \\
\Rightarrow & \sin \theta=\frac{5}{\sqrt{26}}
\end{array}
$$

[1]

$$
\therefore \quad \cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\frac{25}{26}}=\frac{1}{\sqrt{26}}
$$

$$
\overrightarrow{a \cdot b}=|\vec{a}| \mid \vec{b} \cos \theta
$$

$=\sqrt{26} \times 7 \times \frac{1}{\sqrt{26}}=7$
[1]

Therefore $\vec{a} \cdot \vec{b}=7$
4. Clearly d.r's are $<4,1,8>$
$\therefore \quad$ d.r's $= \pm \frac{4}{\sqrt{81}}, \pm \frac{1}{\sqrt{81}}, \pm \frac{8}{\sqrt{81}}$
i.e. $\left\langle\frac{4}{9}, \frac{1}{9}, \frac{8}{9}\right\rangle$ or $\left.<-\frac{4}{9}, \frac{-1}{9}, \frac{-8}{9}\right\rangle$
[1]
5. There are 4 aces in the pack of 52 cards.

So, the required probability $\frac{{ }^{4} C_{2}}{{ }^{52} C_{2}}=\frac{1}{221}$
6. Number of ways of selecting 3 white balls out of 8 white balls $={ }^{8} C_{3}$

So, Required probability $=\frac{{ }^{8} C_{3}}{{ }^{14} C_{3}}=\frac{8 \times 7 \times 6}{14 \times 13 \times 12}=\frac{2}{13}$

SECTION - B

7. Let $I=\int x \sqrt{x^{4}-1} d x$

$$
\begin{aligned}
& \text { Put } \\
& \Rightarrow \\
& x^{2}=t \\
& 2 x d x=d t \\
& I=\frac{1}{2} \int \sqrt{t^{2}-1} d t \\
& =\frac{1}{2}\left[\frac{t \sqrt{t^{2}-1}}{2}-\frac{1}{2} \log \left(t+\sqrt{t^{2}-1}\right)\right]+c \\
& =\frac{1}{4}\left[x^{2} \sqrt{x^{4}-1}-\log \left(x^{2}+\sqrt{x^{4}-1}\right)\right]+c
\end{aligned}
$$

[2]
(Using $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left(x+\sqrt{x^{2}-a^{2}}\right.$)
8. Clearly the differential equation is variable separable

$$
\begin{aligned}
& y d y=\left(1+x^{2}\right) d x \\
& \Rightarrow \int y d y=\int\left(1+x^{2}\right) d x \\
& \Rightarrow \quad \frac{y^{2}}{2}=x+\frac{x^{3}}{3}+c
\end{aligned}
$$

OR

$\frac{d y}{d x}+\frac{x}{1-x^{2}} y=\frac{a x}{1-x^{2}}$
The above equation is first order linear differential equation, whose integrating factor is given by
I.F. $=e^{\int \frac{x}{1-x^{2}} d x}=\frac{1}{\sqrt{1-x^{2}}}$
[1]
Multiply by I.F.
$\frac{d}{d x}\left(y \cdot \frac{1}{\sqrt{1-x^{2}}}\right)=\frac{a x}{\left(1-x^{2}\right)^{3 / 2}}$
$\frac{y}{\sqrt{1-x^{2}}}=\int \frac{a x}{\left(1-x^{2}\right)^{3 / 2}} d x$
[1]
To evaluate the integral substitute
$1-x^{2}=t$
$-2 x d x=d t$
$\frac{y}{\sqrt{1-x^{2}}}=-\frac{a}{2} \int \frac{d t}{t^{3 / 2}}=-\frac{a}{2} \times \frac{1}{\frac{-1}{2} \sqrt{t}}+c$
$y \frac{1}{\sqrt{1-x^{2}}}=-\frac{a}{2} \times \frac{1}{-\frac{1}{2} \sqrt{1-x^{2}}}+c$
$y=a+c \sqrt{1-x^{2}}$
[1]
9. $\quad \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 0 \\ -5 & 7 & 0\end{array}\right|$

$$
\Rightarrow \vec{a} \times \vec{b}=0 \hat{i}-0 \hat{j}+(21+20) \hat{k}
$$

$$
\Rightarrow \vec{a} \times \vec{b}=41 \hat{k}
$$

[1]
We know that,
the area of a triangle $=\frac{1}{2}|\vec{a} \times \vec{b}|=\frac{41}{2}$ sq.unit
[1]
10.
$I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(3 x^{3}-x \cos x+\sec ^{2} x\right) d x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(3 x^{3}-x \cos x\right) d x+\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^{2} x d x$

As we know that if $f(x)$ is an odd function
then $\int_{-a}^{a} f(x) d x=0$
$I=0+[\tan x]_{-\pi / 4}^{\pi / 4}=2$
[1]

SECTION - C

11. Let $y=e^{x} \Rightarrow e^{x} d x=d y$
putting values,

$$
\int_{1}^{e} \frac{e^{x} d x}{1+e^{2 x}}=\int_{1}^{e} \frac{d t}{1+t^{2}}
$$

[1]

$$
=\left[\tan ^{-1} t\right]_{1}^{e}=\tan ^{-1} e-\frac{\pi}{4}
$$

[2]
(As we know $\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+c$)

Required area $=2 \int_{0}^{1}\left(1-x^{2}\right) d x$
[1]

$$
=2\left(x-\frac{x^{3}}{3}\right)_{0}^{1}
$$

[1]

$$
=2\left(1-\frac{1}{3}\right)=\frac{4}{3}=\text { sq. units }
$$

[1]

\Rightarrow
$\Rightarrow \quad x^{2}+x-2=0$
$(x+2)(x-1)=0$
$x=-2,1$
[1]
$=\int_{-2}^{1}\left\{(2-x)-x^{2}\right\} d x$
[1]

$$
\begin{aligned}
& =\left[2 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-2}^{1} \\
& =2(3)-\frac{1}{2}(1-4)-\frac{1}{3}(1+8) \\
& =6+\frac{3}{2}-3
\end{aligned}
$$

Required area

$$
=\frac{9}{2} \text { sq. units }
$$

[1]
13. $x=y=z$
... (i)

$$
\begin{align*}
& 2 x+y+z=1 \tag{ii}\\
& 3 x+y+2 z=2 \tag{iii}
\end{align*}
$$

Normal vector to plane (ii) is $\overrightarrow{n_{2}}=2 \hat{i}+\hat{j}+\hat{k}$
Similarly normal vector to the plane (iii) is $\vec{n}_{3}=3 \hat{i}+\hat{j}+2 \hat{k}$
Vector parallel to the line of intersection is $\overrightarrow{n_{2}} \times \overrightarrow{n_{3}}$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 1 \\
3 & 1 & 2
\end{array}\right| \\
& =\hat{i}(2-1)-\hat{j}(4-3)+\hat{k}(2-3)
\end{aligned}
$$

$=(\hat{i}-\hat{j}-\hat{k})$, hence DR's of the line are $(1,-1,-1)$

To find point on the line of intersection, we put $z=0$ in (ii) and (iii)
\Rightarrow

$$
\begin{array}{r}
2 x+y=1 \\
\ldots \text { (iv) } \\
3 x+y=2 \tag{v}
\end{array}
$$

Solving (iv) and (v)

$$
x=1, y=-1, z=0
$$

Equation of line is

$$
\begin{equation*}
\frac{x-1}{1}=\frac{y+1}{-1}=\frac{z-0}{-1} \tag{vi}
\end{equation*}
$$

[1]
Let one point on the line (i) is $\overrightarrow{a_{1}}=(0 \hat{i}+0 \hat{j}+0 \hat{k})$
Similarly the point on the line is $\overrightarrow{a_{2}}=(\hat{i}-\hat{j}+0 \hat{k})$
Vector parallel to line (i) is $\overrightarrow{b_{1}}=\hat{i}+\hat{j}+\hat{k}$
Similarly the vector parallel to the line (vi) is $\overrightarrow{b_{2}}=(1,-1,-1)$

$$
\begin{array}{ll}
& \overrightarrow{b_{1} \times} \overrightarrow{b_{2}}
\end{array}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 1 \tag{1}\\
1 & -1 & -1
\end{array}\right|=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 0 & 0 \\
1 & -1 & -1
\end{array}\right|
$$

Shortest distance $=\left|\frac{\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|$
Shortest distance $=\left|\frac{(\hat{i}-\hat{j}) \cdot(2 \hat{j}-2 \hat{k})}{2 \sqrt{2}}\right|=\left|\frac{2}{2 \sqrt{2}}\right|=\frac{1}{\sqrt{2}}$

OR

Here $\overrightarrow{a_{1}}=-3 \hat{i}+6 \hat{j}, \overrightarrow{a_{2}}=-2 \hat{i}+7 \hat{k}, \quad \overrightarrow{b_{1}}=-4 \hat{i}+3 \hat{j}+2 \hat{k}$
and $\hat{b}_{2}=-4 \hat{i}+\hat{j}+\hat{k}$.

$$
\overrightarrow{a_{2}}-\overrightarrow{a_{1}}=\hat{i}-6 \hat{j}+7 \hat{k}, \quad \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-4 & 3 & 2 \\
-4 & 1 & 1
\end{array}\right|=i-4 \hat{j}+8 \hat{k}
$$

[1]

$$
\text { S.D. }=\left|\frac{\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot \overrightarrow{b_{j}} \times \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}} \times b_{2}\right|}\right|
$$

[1]

$$
\begin{equation*}
=\frac{(1+24+56)}{\sqrt{1+16+64}}=\frac{81}{9}=9 \text { units } \tag{1}
\end{equation*}
$$

14. Let E_{1} and E_{2} be the events of choosing a bicycle from the first and second plants respectively, then

$$
\begin{equation*}
P\left(E_{1}\right)=\frac{60}{100}=\frac{3}{5} \text { and } P\left(E_{2}\right)=\frac{40}{100}=\frac{2}{5} \tag{1}
\end{equation*}
$$

Let E be the event of choosing a bicycle of standard quality. Then,
$\mathrm{P}\left(E \mid E_{1}\right)=$ probability of choosing a bicycle of standard quality given that it is produced by the first plant.

$$
=\frac{80}{100}=\frac{4}{5}
$$

$\mathrm{P}\left(E \mid E_{2}\right)$ = probability of choosing a bicycle of standard quality, given that it is produced by the second plant.

$$
=\frac{90}{100}=\frac{9}{10}
$$

(i) Using Bayes' theorem, the required probability is
$P\left(E_{1} \mid E\right)=$ probability of choosing a bicycle from the first plant, given that it is of standard quality.

$$
=\frac{P\left(E_{1}\right) P\left(E \mid E_{1}\right)}{P\left(E_{1}\right) P\left(E \mid E_{1}\right)+P\left(E_{2}\right) P\left(E \mid E_{2}\right)}
$$

[1]

$$
=\frac{\frac{3}{5} \times \frac{4}{5}}{\frac{3}{5} \times \frac{4}{5}+\frac{2}{5} \times \frac{9}{10}}=\frac{4}{7}
$$

[1]
(ii)

$$
P\left(E_{2} \mid E\right)=\frac{P\left(E_{2}\right), P\left(E \mid E_{2}\right)}{P\left(E_{1}\right) P\left(E \mid E_{1}\right)+P\left(E_{2}\right) P\left(E \mid E_{2}\right)}
$$

[1]

$$
=\frac{\frac{2}{5} \times \frac{9}{10}}{\frac{3}{5} \times \frac{4}{5}+\frac{2}{5} \times \frac{9}{10}}=\frac{3}{7}
$$

[1]

