Mock Board Exam

Physics

Solutions

SECTION-A

1. (a) Since the speed of EM waves in free space is $c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$

$$
\therefore\left[\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}\right]=[c]=\left[\mathrm{LT}^{-1}\right]
$$

(b) Plane electromagnetic wave travels in direction of $\vec{E} \times \vec{B}$
2. - Advantages of LED
(i)

LEDs have long life and ruggedness
(ii) Low operational voltage and low power consumption

- LED operates properly in forward biasing
- Symbol of LED is

Given $E_{g}=2 \mathrm{eV}$
$\begin{array}{lll}\square & h v \geq E_{g} & {[1 / 2]} \\ \therefore & h_{v \min }=E_{g} & {[1 / 2]}\end{array}$
$v_{\text {min }}=\frac{E_{g}}{h}=\frac{2 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34}}$ [1/2]
$V_{\text {min }}=4.85 \times 10^{14} \mathrm{~Hz}$
[1/2]
3. From Einstein's photoelectric equation
$\mathrm{KE}_{\text {max }}=h v-\phi$
[1/2]
Since, stopping potential is related with KE as

$$
e V_{s}=K E_{\max }=h v-h v_{0} \quad[1 / 2]
$$

$$
V_{s}=\frac{h}{e}\left(v-v_{0}\right)
$$

The plot of stopping potential with frequency v is

SECTION-B

4. Let us consider the situation shown in the figure

Here C_{1} and C_{2} are centres of curvature of two spherical surfaces of the thin lens. O is the object and O_{1} is the image due to the first refraction. Let radii of curvature be R_{1} and R_{2}
For first refraction
$\frac{\mu_{2}}{v_{1}}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R_{1}}$
O_{1} acts as an object for second refraction
$\frac{\mu_{1}}{v}-\frac{\mu_{2}}{v_{1}}=\frac{\mu_{1}-\mu_{2}}{R_{2}}$
Adding equation (1) and (2), we get
$\mu_{1}\left(\frac{1}{v}-\frac{1}{u}\right)=\left(\mu_{2}-\mu_{1}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\frac{1}{v}-\frac{1}{u}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
[1/2]
Where ${ }^{\frac{1}{f}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)}$
5. (a) Width of central maxima in single slit diffraction pattern $W=\frac{2 \lambda D}{a}$

Where λ is wavelength
D is distance of screen from the slit
a is width of the slit [1]
(b) Width of central maxima in single slit diffraction pattern

$$
W=\frac{2 \lambda D}{a}
$$

[1]
$=\frac{2 \times 630 \times 10^{-9} \times 2}{2.0 \times 10^{-4}}$
$=1.26 \mathrm{~cm}$
[1]

6. (a)

$$
\begin{aligned}
& \sin i=\frac{3}{3 \sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \sin r=\frac{3}{5}
\end{aligned}
$$

From Snell's law

$$
\mu=\frac{\sin i}{\sin r}=\frac{\frac{1}{\sqrt{2}}}{\left(\frac{3}{5}\right)}
$$

$\mu=\frac{5}{3 \sqrt{2}}$
$v=\frac{c}{\mu}=\frac{3 \times 10^{8}}{\frac{5}{3 \sqrt{2}}}=\frac{9 \sqrt{2}}{5} \times 10^{8} \mathrm{~m} / \mathrm{s}$
$v \approx 2.5 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad[1 / 2]$
(b) (i)

$$
\sin \theta_{C}=\frac{1}{\mu}=\frac{1}{\sqrt{2}}
$$

$\theta_{C}=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}$
For thin prism, minimum deviation $\delta=(\mu-1) A$
(ii)

Where $\mu \rightarrow$ refractive index of Prism material
$A \rightarrow$ Prism angle
7. Given $\lambda=5 \times 10^{-7} \mathrm{~m}$
$\mathrm{y}_{2}=1 \times 10^{-2} \mathrm{~m}$
$D=2 \mathrm{~m}$
$d=$?
From relation $y_{n}=\frac{n \lambda D}{d}$
$y_{2}=\frac{2 \lambda D}{d}$
$d=\frac{2 \lambda D}{y_{2}}$
[1]
$d=\frac{2 \times 5 \times 10^{-7} \times 2}{1 \times 10^{-2}}$
$d=2 \times 10^{-4} \mathrm{~m}$
$d=0.2 \mathrm{~mm}$

8. Compound microscope

The lens near an object is called an objective, and forms a real inverted and magnified image of the object. This serves as an object for eyepieces. Here the shown ray diagram is for the final image at the near point.

As magnifying power $(m)=m_{0} m_{e} \ldots$.(1)
where m_{e} is angular magnification of eyepiece
The magnifying power of objective $m_{0}=\frac{v_{0}}{u_{0}}$
For image at far point $m_{e}=\left(1+\frac{D}{f_{e}}\right)$, so

$$
m=\frac{v_{0}}{u_{0}}\left[\frac{D}{f_{e}}\right]
$$

[1]

For an image at a far point, $m_{e}=\frac{D}{f_{e}}$, so
OR

(b) Given $f_{0}=60 \mathrm{~cm}, f_{e}=5 \mathrm{~cm}$
(i) For image in normal adjustment mode

$$
\begin{aligned}
& m=\frac{f_{0}}{f_{e}} \\
& m=\frac{60}{5}=12
\end{aligned}
$$

(ii) For image at near point

$$
\begin{aligned}
& m=\frac{f_{0}}{f_{e}}\left[1+\frac{f_{e}}{D}\right] \\
& m=\frac{60}{5}\left[1+\frac{5}{25}\right] \\
& m=12\left[1+\frac{1}{5}\right] \\
& =14.4
\end{aligned}
$$

9. - Ionisation energy: The minimum energy needed to ionize an atom is called "ionisation energy"

- Energy of first orbit of hydrogen atom $E_{1}=-13.6 \mathrm{eV}$

Potential energy of electrons in $1^{\text {st }}$ orbit is $\mathrm{PE}_{1}=2 \mathrm{E}_{1}$
$P E_{1}=-27.2 \mathrm{eV}$
[1/2]
Ionisation energy of an electron in ground state ($1^{\text {st }}$ orbit) is $E=-E_{1}$
$=-(-13.6) \mathrm{eV}=13.6 \mathrm{eV}$
10. The fusion reaction is written as ${ }_{2}^{4} \mathrm{He}+{ }_{2}^{4} \mathrm{He}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{6}^{12} \mathrm{C}+Q$

Given $m\left({ }_{2}^{4} \mathrm{He}\right)=4.002603 \mathrm{u}$
Now Q-value of reaction will be

$$
\begin{equation*}
Q=\left\{3\left[m\left({ }_{2}^{4} \mathrm{He}\right)\right]-m\left({ }_{6}^{12} \mathrm{C}\right)\right\}_{c^{2}} \tag{1}
\end{equation*}
$$

$=[3(4.002603 u)-12 u] c^{2}$
$=[12.007809 u-12 u] c^{2}[1 / 2]$
$=[0.007809 \times 931.5] \mathrm{MeV} \quad[1 ⁄ 2]$
$=7.274 \mathrm{MeV}$
[1/2]
11. Bohr's three postulates are as follows
(1) In a hydrogen atom, an electron revolves in certain stable orbits, called stationary orbits without the emission of radiant energy.
(2) The stationary orbit are those for which the angular momentum is some integral of $\frac{h}{2 \pi}$, i.e. $L=\frac{n h}{2 \pi}$, where n is an integer called a quantum number
(3) The third postulate states that an electron might make a transition from one of its specified nonradiating orbits to another of lower energy. When this transition takes place, a photon is emitted having energy equal to the energy difference between the initial and final states. The frequency (v) of the emitted photon is then given by

$$
\begin{equation*}
h v=E_{i}-E_{f} \tag{1}
\end{equation*}
$$

Since transition A has minimum energy difference therefore photons emitted have longest wavelength
For transition $A, \Delta E_{A}=[-0.85-(-1.51) \mathrm{eV}]$
$\Delta E_{A}=0.66 \mathrm{eV}$
[1/2]
$\frac{h c}{\lambda_{A}}=\Delta E_{A}$
$\lambda_{A}=\frac{12400}{0.66} \AA \approx 18788 \AA$

$$
[1 / 2]
$$

For transition $C, \Delta E_{C}=[-1.51 \mathrm{eV}-(-13.6 \mathrm{eV})]$
$\Delta E_{C}=12.09 \mathrm{eV}$
[1/2]
$\frac{h c}{\lambda_{c}}=\Delta E_{C}$
$\lambda_{C}=\frac{12400}{12.09} \AA=1025.6 \AA$
[1/2]

SECTION-C

12. (a) Answer (i) Conductors have positive temperature coefficient of resistance while semiconductor and insulator have negative temperature coefficient of resistance
(b) Answer (i)

For semiconductor $E_{g}<3 \mathrm{eV}$ while
For insulator $E_{g}>3 \mathrm{eV}$
Hence material having band gap 1.4 eV is semiconductor
(c) Answer (ii)

When silicon is doped with phosphorus, then semiconductor becomes of n-type because phosphorus is pentavalent
(d) Answer (ii)

When silicon is doped with trivalent atoms then the number of holes increases and the semiconductor becomes of p-type. i.e. $n_{e} \ll n_{h}$
(e) Answer (iii)

Since all types of semiconductors are electrically neutral i.e. total negative charge is equal to total positive charge i.e. $N_{a}+n_{e}=N_{d}+n_{h}$

