Mock Board Exam Physics Solutions SECTION-A

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

1. (a) Since the speed of EM waves in free space is

$$\therefore \left\lfloor \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \right\rfloor = [c] = [LT^{-1}]$$

- (b) Plane electromagnetic wave travels in direction of $\vec{E} \times \vec{B}$
- 2. Advantages of LED

(i)	LEDs have long life and ruggedness	[1/2]
(ii)	Low operational voltage and low power consumption	[½]

· LED operates properly in forward biasing

[1/2]

Symbol of LED is

OR

- Given $E_g = 2 \text{ eV}$
- $\Box \quad hv \geq E_g \qquad [1/_2]$

$$\therefore hv_{\min} = E_g$$

$$v_{\min} = \frac{E_g}{h} = \frac{2 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34}}$$
 [½]

 $v_{min} = 4.85 \times 10^{14} \text{ Hz}$ [½]

3. From Einstein's photoelectric equation

$$\mathsf{KE}_{\mathsf{max}} = h\mathsf{v} - \varphi \qquad [1/_2]$$

Since, stopping potential is related with KE as

 $eV_s = KE_{max} = hv - hv_0$ [½]

$$V_{\rm s} = \frac{h}{e} (v - v_0)$$

The plot of stopping potential with frequency \boldsymbol{v} is

[½]

[½]

[1]

[1]

[½]

[½]

SECTION-B

Let us consider the situation shown in the figure 4.

Here C_1 and C_2 are centres of curvature of two spherical surfaces of the thin lens. O is the object and O_1 is the image due to the first refraction. Let radii of curvature be R_1 and R_2 [1] For first refraction

$$\frac{\mu_2}{\nu_1} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R_1} \dots (1) \quad [1/2]$$

O1 acts as an object for second refraction

[½]

$$\frac{\mu_1}{\nu} - \frac{\mu_2}{\nu_1} = \frac{\mu_1 - \mu_2}{R_2} \dots (2)$$

Adding equation (1) and (2), we get

$$\mu_{1}\left(\frac{1}{v} - \frac{1}{u}\right) = (\mu_{2} - \mu_{1})\left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right)$$
$$\frac{1}{v} - \frac{1}{u} = \left(\frac{\mu_{2}}{\mu_{1}} - 1\right)\left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right) \quad [1/2]$$
$$\frac{1}{f} = \left(\frac{\mu_{2}}{\mu_{1}} - 1\right)\left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right)$$
Where

5.

W =(a) Width of central maxima in single slit diffraction pattern

Where λ is wavelength

D is distance of screen from the slit

a is width of the slit [1]

(b) Width of central maxima in single slit diffraction pattern

$$W = \frac{2\lambda D}{a}$$
 [1]
= $\frac{2 \times 630 \times 10^{-9} \times 2}{2.0 \times 10^{-4}}$
= 1.26 cm [1]

2λD

а

[½]

	3 cm	air 3 cm	
6.	(a)	3 cm - Liquid	
	$\sin i = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}}$		
	$\sin r = \frac{3}{5}$		
	μ = From Snell's law	$=\frac{\sin i}{\sin r}=\frac{\frac{1}{\sqrt{2}}}{\left(\frac{3}{5}\right)}$	[½]
	$\mu = \frac{5}{3\sqrt{2}}$		
	$v = \frac{c}{\mu} = \frac{3 \times 10^8}{5} = \frac{9 \times 10^8}{5}$	<u>/2</u> ₅ ×10 ⁸ m/s	
	3√2		[1/2]
	v ≈ 2.5 × 10 ⁸ m/s		
	(b) (i)	$\sin\theta_C = \frac{1}{\mu} = \frac{1}{\sqrt{2}}$	[½]
		$\theta_c = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^\circ$	
	(ii)	For this price, minimum deviation $\delta = (v = 1) \Delta$	[½]
	(11)	For this pism, minimum deviation $\delta = (\mu - 1)A$ Where $\mu \rightarrow$ refractive index of Prism material	[72]
		$A \rightarrow \text{Prism angle}$	
7.	Given $\lambda = 5 \times 10^{-7}$ m		
	$y_2 = 1 \times 10^{-2} \text{ m}$		
	D = 2 m d = ?		
	nλD	,	
	From relation $y_n = \frac{d}{d}$	[1]	
	$y_2 = \frac{2\lambda D}{d}$		
	$d = \frac{2\lambda D}{y_2}$	[1]	

$$d = \frac{2 \times 5 \times 10^{-7} \times 2}{1 \times 10^{-2}}$$
$$d = 2 \times 10^{-4} \text{ m}$$

8. Compound microscope

The lens near an object is called an objective, and forms a real inverted and magnified image of the object. This serves as an object for eyepieces. Here the shown ray diagram is for the final image at the near point.

 $m_0 = \frac{v_0}{u_0}$...(2)

As magnifying power $(m) = m_0 m_e \dots (1)$

where me is angular magnification of eyepiece

[1]

The magnifying power of objective

For image at far point $m_e = \left(1 + \frac{D}{f_e}\right)$, so

$$m = \frac{v_0}{u_0} \left[\frac{D}{f_e} \right]$$

For an image at a far point, $m_e = \frac{D}{f_e}$, so

(b) Given $f_0 = 60$ cm, $f_e = 5$ cm

(i) For image in normal adjustment mode

[½]

[1]

[½]

[1]

9.

	$m = \frac{f_0}{f_e}$	[½]
	$m = \frac{60}{5} = 12$	[1/4]
	(ii) For image at near point	[/-]
	$m = \frac{f_0}{f_e} \left[1 + \frac{f_e}{D} \right]$	[½]
	$m = \frac{60}{5} \left[1 + \frac{5}{25} \right]$	
	$m = 12 \left[1 + \frac{1}{5} \right]$	
	= 14.4	[1/2]
9.	• Ionisation energy: The minimum energy needed to ionize an atom is called "ionisation energy"	[1]
	• Energy of first orbit of hydrogen atom $E_1 = -13.6 \text{ eV}$	[½]
	Potential energy of electrons in 1^{st} orbit is $PE_1 = 2E_1$	
	$PE_1 = -27.2 \text{ eV}$ [¹ / ₂]	[1/4]
	= -(-13.6) eV = 13.6 eV	[/2]
	$^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \text{O}$	
10.	The fusion reaction is written as 2110 + 2110 + 2110 + 2110 + 6	[1/2]
	Given $m({}_{2}^{4}\text{He}) = 4.002603 \text{ u}$	
	Now Q-value of reaction will be	
	$Q = \left\{ 3 \left[m \binom{4}{2} \text{He} \right] - m \binom{12}{6} C \right\}_{C^2}$	[1]
	$= [3(4.002603 \text{ u}) - 12 \text{ u}]c^{2}$ = [12.007809 \text{ u} - 12 \text{ u}]c^{2} [1/2] = [0.007809 \text{ y} 331.5] MeV [1/2] = 7.274 MeV [1/2]	
11.	Bohr's three postulates are as follows	
	 In a hydrogen atom, an electron revolves in certain stable orbits, called stationary orbits with emission of radiant energy. 	out the [1]

- (2) The stationary orbit are those for which the angular momentum is some integral of $\frac{h}{2\pi}$, *i.e.* L = where *n* is an integer called a quantum relation $\frac{nh}{2\pi}$, where *n* is an integer called a quantum number [1]
- (3) The third postulate states that an electron might make a transition from one of its specified nonradiating orbits to another of lower energy. When this transition takes place, a photon is emitted having energy equal to the energy difference between the initial and final states. The frequency (v) of the emitted photon is then given by

$$hv = E_i - E_f \tag{1}$$

OR

Since transition A has minimum energy difference therefore photons emitted have longest wavelength [1]

For transition A,
$$\Delta E_A = [-0.85 - (-1.51)eV]$$

 $\Delta E_A = 0.66 eV$ [½]
 $\frac{hc}{\lambda_A} = \Delta E_A$
 $\lambda_A = \frac{12400}{0.66} \text{ Å} \approx 18788 \text{ Å}$ [½]
For transition C, $\Delta E_C = [-1.51 eV - (-13.6 eV)]$
 $\Delta E_C = 12.09 eV$ [½]
 $\frac{hc}{\lambda_C} = \Delta E_C$
 $\lambda_C = \frac{12400}{12.09} \text{ Å} = 1025.6 \text{ Å}$ [½]

SECTION-C

- 12. (a) Answer (i) Conductors have positive temperature coefficient of resistance while semiconductor and insulator have negative temperature coefficient of resistance [1]
 - (b) Answer (i)For semiconductor $E_g < 3 \text{ eV}$ whileFor insulator $E_g > 3 \text{ eV}$ Hence material having band gap 1.4 eV is semiconductor[1]
 - (c) Answer (ii)
 When silicon is doped with phosphorus, then semiconductor becomes of *n*-type because phosphorus is
 - pentavalent
 - (d) Answer (ii)

When silicon is doped with trivalent atoms then the number of holes increases andthe semiconductor becomes of p-type. *i.e.* $n_e << n_h$ [1]

[1]

(e) Answer (iii)

Since all types of semiconductors are electrically neutral i.e. total negative charge is equal to total positive charge i.e. $N_a + n_e = N_d + n_h$ [1]

###