Class 9 Maths Chapter 7 Triangles MCQs - Practice Questions

1. "If three sides of one triangle are equal to three sides of the other triangle, then the two triangles are congruent" is a \qquad .
(a) SSS congruence rule
(b) ASA congruence rule
(c) RHS congruence rule
(d) AAS congruence rule
2. The sum of any two sides of a triangle is \qquad than the third side.
(a) Lesser
(b) Greater
(c) Equal
(d) None of the above
3. Two squares of the same sides are \qquad .
(a) Not congruent
(b) Congruent
(c) Both (a) and (b)
(d) None of the above
4. Sides opposite to equal angles of a triangle are \qquad .
(a) Smaller
(b) Greater
(c) Equal
(d) None of the above
5. "If in two right triangles, hypotenuse and one side of a triangle are equal to the hypotenuse and one side of other triangle, then the two triangles are congruent" is a
\qquad -
(a) SSS congruence rule
(b) ASA congruence rule
(c) RHS congruence rule
(d) AAS congruence rule
6. In a triangle, angle opposite to the longer side is \qquad .
(a) Equal
(b) Smaller
(c) Larger
(d) None of the above
7. Two figures are congruent, if they are of the \qquad shape and of the \qquad size.
(a) Same, Different
(b) Same, Same
(c) Different, Same
(d) Different, Different
8. Two circles of the \qquad radii are congruent.
(a) Same
(b) Different
(c) Unequal
(d) None of the above
9. If two triangles $A B C$ and $P Q R$ are congruent under the correspondence $A \leftrightarrow P, B \leftrightarrow Q$ and $C \leftrightarrow R$, then symbolically, it is expressed as \qquad .
(a) $\Delta \mathrm{ACB} \cong \triangle \mathrm{PQR}$
(b) $\Delta \mathrm{ABC} \cong \Delta \mathrm{PQR}$
(c) $\Delta \mathrm{ABC} \cong \triangle \mathrm{PRQ}$
(d) None of the above
10. "If two sides and the included angle of one triangle are equal to two sides and the included angle of the other triangle, then the two triangles are congruent" is a \qquad .
(a) SSS congruence rule
(b) SAS congruence rule
(c) RHS congruence rule
(d) None of the above

$1-(\mathrm{a})$	$2-(\mathrm{b})$	$3-(\mathrm{b})$	$4-(\mathrm{c})$	$5-(\mathrm{c})$
$6-(\mathrm{c})$	$7-(\mathrm{b})$	$8-(\mathrm{a})$	$9-(\mathrm{b})$	$10-(\mathrm{b})$

