## Class 9 Maths Chapter 9 Areas of Parallelograms and Triangles MCQs Practice Questions

1. If two figures $A$ and $B$ are congruent, they must have $\qquad$ areas
(a) Unequal
(b) Equal
(c) Different
(d) None of the above
2. A Shape with 3 sides is called $\qquad$
(a) Triangle
(b) Quadrilateral
(c) Pentagon
(d) Hexagon
3. If a planar region formed by a figure $A$ is made up of two non-overlapping planar regions formed by figures $X$ and $Y$, then $\operatorname{ar}(A)=$ $\qquad$ .
(a) $\operatorname{ar}(\mathrm{X})+\operatorname{ar}(\mathrm{Y})$
(b) $\operatorname{ar}(\mathrm{X})-\operatorname{ar}(\mathrm{Y})$
(c) $\operatorname{ar}(\mathrm{X}) \times \operatorname{ar}(\mathrm{Y})$
(d) $\operatorname{ar}(\mathrm{X}) / \operatorname{ar}(\mathrm{Y})$
4. Parallelograms on the same base and between the same parallels are $\qquad$ .
(a) Greater in area
(b) Equal in area
(c) Smaller in area
(d) None of the above
5. Two triangles having the same base and equal areas lie between the $\qquad$ parallels.
(a) Different
(b) Non-equal
(c) Same
(d) None of the above
6. Area of a triangle is $\qquad$ the product of its base and the corresponding altitude.
(a) Twice
(b) Thrice
(c) Half
(d) Both (a) and (b)
7. Area of a parallelogram is the $\qquad$ of its base and the corresponding altitude.
(a) Sum
(b) Product
(c) Difference
(d) None of the above
8. Two congruent figures have equal areas but the converse $\qquad$ be true.
(a) Should
(b) Need
(c) Need not
(d) None of the above
9. The $\qquad$ of a figure is a number (in some unit) associated with the part of the plane enclosed by that figure.
(a) Area
(b) Surface
(c) Boundary
(d) None of the above
10. The part of the plane enclosed by a simple closed figure is called a $\qquad$ region corresponding to that figure.
(a) Non-planar
(b) Planar
(c) Both (a) and (b)
(d) Neither (a) nor (b)

$$
* * * * * * * * * * \operatorname{ANSWER} \operatorname{KEY} * * * * * * * * * *
$$

| $1-(\mathrm{b})$ | $2-(\mathrm{a})$ | $3-(\mathrm{a})$ | $4-(\mathrm{b})$ | $5-(\mathrm{c})$ |
| :---: | :---: | :---: | :---: | :---: |
| $6-(\mathrm{c})$ | $7-(\mathrm{b})$ | $8-(\mathrm{c})$ | $9-(\mathrm{a})$ | $10-(\mathrm{b})$ |

