ΒY.

- 1. At 300 *K* and 1 atmospheric pressure, 10 mL of a hydrocarbon required 55 mL of O_2 for complete combustion and 40 mL of CO_2 is formed. The formula of the hydrocarbon is:
 - **A.** C_4H_8
 - **B.** C_4H_7Cl
 - **C.** C_4H_{10}
 - **D.** C_4H_6
- 2. What would be the molality of 20% (mass/mass) aqueous solution of *KI* ? Molar mass of *KI* is $166 \ g \ mol^{-1}$
 - **A.** 1.51
 - **B.** 1.35
 - **C**. 1.08
 - **D**. 1.48
- 3. Complete combustion of 1.80 g of an oxygen containing compound $(C_x H_y O_z)$ gave 2.64 g of CO_2 and 1.08 g of H_2O . The percentage of oxygen in the organic compound is :
 - **A.** 50.33
 - **B.** 53.33
 - **C.** 51.63
 - **D.** 63.53

Atomic weight of Cl=35.5~uAvogadro constant, $N_A=6.023 imes 10^{23}$

A. 6.023×10^9

B. 6.023×10^{23}

- C. $_{6.023\,\times\,10^{21}}$
- **D.** 6.023×10^{20}
- 5. On heating, a sample of $NaClO_3$, it gets converted to NaCl with a loss of 0.16 g of oxygen. The residue is dissolved in water and precipitated as AgCl. The mass of AgCl (in g) obtained will be : (Given molar mass of $AgCl = 143.5 \ g \ mol^{-1}$)
 - **A.** 0.35
 - **B.** 0.54
 - **C.** 0.41
 - **D**. 0.48
- 6. 5 moles of AB_2 weigh $125 \times 10^{-3} kg$ and 10 moles of A_2B_2 weigh $300 \times 10^{-3} kg$. The molar mass of $A(M_A)$ and molar mass of $B(M_B)$ in kg/mol are :
 - A. $M_A = 10 \times 10^{-3} and M_B = 5 \times 10^{-3}$
 - **B.** $M_A = 25 \times 10^{-3} and M_B = 50 \times 10^{-3}$
 - **C.** $M_A = 5 imes 10^{-3} and M_B = 10 imes 10^{-3}$
 - **D.** $M_A = 50 imes 10^{-3} and M_B = 25 imes 10^{-3}$

- 7. 100 mL of a water sample contains 0.81g of calcium bicarbonate and 0.73g of magnesium bicarbonate. The hardness of this water sample expressed in terms of ppm of $CaCO_3$ is: (molar mass of calcium bicarbonate is 162 g/mol and magnesium bicarbonate is 146 g/mol.
 - **A.** 1000 ppm
 - **B.** 10000 ppm
 - **C.** 100 ppm
 - **D.** 5000 *ppm*
- 8. 1 gram of a metal carbonate (M_2CO_3) on treatment with excess HCl produces 0.01186 mole of CO_2 . The molar mass of (M_2CO_3) in $gmol^{-1}$ is
 - **A.** 1186
 - **B.** 84.3
 - **C**. 118.6
 - **D.** 11.86
- 9. Find the mole fraction of methanol in its 5.2 molal aqueous solution.
 - **A.** 0.190
 - **B.** 0.086
 - **C**. 0.050
 - **D.** 0.100

- 10. The density of a solution prepared by dissolving 120 g of urea (mol. mass = 60 g/mol) in 1000 g of water is 1.15 g/mL. The molarity of this solution is
 - **A.** 1.78 M
 - **B.** 1.02 M
 - **C.** 2.05 M
 - **D.** 0.50M
- 11. The ground state energy of hydrogen atom is -13.6 eV. The energy of second excited state of He^+ ion in eV is
 - **A.** -6.04
 - **B.** -27.2
 - **C.** -54.4
 - **D.** -3.4
- 12. The de Broglie wavelength (λ) associated with a photoelectron varies with the frequency (v) of the incident radiation as, [v_0 is threshold frequency]:

A.
$$\lambda \propto \frac{1}{(v-v_0)^{\frac{3}{2}}}$$

B. $\lambda \propto \frac{1}{(v-v_0)^{\frac{1}{2}}}$
C. $\lambda \propto \frac{1}{(v-v_0)^{\frac{1}{4}}}$
D. $\lambda \propto \frac{1}{(v-v_0)}$

13. What is the work function of the metal if the light of wavelength 4000 Å generates photoelectrons of velocity $6 \times 10^5 m s^{-1}$ form it? (Mass of electron = $9 \times 10^{-31} kg$ Velocity of light = $3 \times 10^8 m s^{-1}$ Planck's constant = $6.626 \times 10^{-34} Js$ Charge of electron = $1.6 \times 10^{-19} JeV^{-1}$)

A. 0.9 eV

B. 4.0 eV

C. 2.1 eV

D. 3.1 eV

- 14. The number of subshells associated with n = 4 and m = -2 quantum numbers is:
 - A. 4
 B. 8
 C. 2
 D. 16
- 15. The region in the electromagnetic spectrum where the Balmer series lines appear is:
 - A. Microwave
 - B. Infrared
 - C. Visible
 - D. None of the above

Copyright © Think and Learn Pvt. Ltd.

16. The shortest wavelength of H atom in the Lyman series is λ_1 . The longest wavelength in the Balmer series of He^+ is

A.
$$\frac{5\lambda_1}{9}$$

B.
$$\frac{36\lambda_1}{5}$$

C.
$$\frac{27\lambda_1}{5}$$

D.
$$\frac{9\lambda_1}{5}$$

- 17. The correct statement about probability density (except at infinite distance from nucleus) is
 - A. It can never be zero for 2s orbital
 - B. It can be zero for 3p orbital
 - C. It can be zero for 1s orbital
 - **D.** It can be negative for 2p orbital
- 18. The difference between radii of 3rd and 4th orbits of Li^{2+} is ΔR_1 . The difference between the radii of 3rd and 4th orbits of He^+ is ΔR_2 . Ratio $\Delta R_1 : \Delta R_2$ is
 - A. 3:2
 B. 8:3
 - **C.** 2:3
 - **D.** 3:8

- ^{19.} The number of electron associated with quantum numbers n = 5, $m_s = +\frac{1}{2}$ is
 - **A.** 15
 - **B**. 50
 - **C**. 25
 - **D**. 11
- 20. The radius of the second Bohr orbit, in terms of the Bohr radius, a_0 , in Li^{2+} is:
 - A. $\frac{2a_0}{3}$ B. $\frac{2a_0}{9}$ C. $\frac{4a_0}{9}$ D. $\frac{4a_0}{3}$
- 21. The ratio of the mass percentages of 'C and H' and C &O of a saturated acyclic organic compound 'X' are 4:1 and 3:4 respectively. Then, the moles of oxygen gas required for complete combustion of two moles of organic compound 'X' is
- 22. Ferrous sulphate heptahydrate is used to fortify foods with iron. The amount (in grams) of the salt required to achieve 10 ppm of iron in 100 kg of wheat (Rounded-off to the nearest integer) is
 [Atomic weight : Fe=55.85 S=32.00 O=16.00]

23. The number of atoms of Na in 8 g of its sample is $x \times 10^{23}$. The value of x(rounded off to the nearest integer) is

 $[{\rm Given}:N_A=6.02\times 10^{23}mol^{-1} \\ {\rm and \ Atomic\ mass\ of\ Na=23.0u]}$

- 24. 100 g of propane is completely reacted with 1000g of oxygen. The mole fraction of carbon dioxide in the resulting mixture is $x \times 10^{-2}$. The value of 'x' is (Rounded off to the nearest integer) is [Atomic weight :H=1.008;C=12.00;O=16.00]
- 25. $NaClO_3$ is used even in spacecrafts to produce O_2 . The daily consumption of pure O_2 by a person is 492 L at 1 *atm* and 300 *K*. How much amount of $NaClO_3$ in grams, is required to produce O_2 for the daily consumption of a person at STP?

 $NaClO_3(s) + Fe(s)
ightarrow O_2(g) + NaC1(s) + FeO(s)$

- 26. A metal surface is exposed to 500 nm radiation. The threshold frequency of the metal for photoelectric current is $4.3 \times 10^{14} Hz$. The velocity of ejected electron is $\times 10^5 ms^{-1}$. (Nearest integer) [Use : $h = 6.63 \times 10^{-34} Js$, $m_e = 9.0 \times 10^{-31} kg$]
- 27. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is equal to $\frac{h^2}{xma_0^2}$. The value of 10x is . (a_0 is radius of Bohr's orbit) (Nearest integer) [Given: $\pi = 3.14$]
- 28. The number of photons emitted by a monochromatic (single frequency) infrared range finder of power 1 mW and wavelength of 1000 nm, in 0.1 second is $x \times 10^{13}$. The value of x is . (Nearest integer) ($h = 6.63 \times 10^{-34} Js$, $c = 3.00 \times 10^8 ms^{-1}$)

- 29. The value of magnetic quantum number of the outermost electron of Zn^+ ion is . (Integer answer)
- 30. A 50 watt bulb emits monochromatic red light of wavelength of 795 nm. The number of photons emitted per second by the bulb is $x imes 10^{20}$. The value of x is . (Nearest integer)

[Given: $h = 6.63 imes 10^{-34}~Js$ and $c = 3.0 imes 10^8~ms^{-1}$]