Some Basic Concepts of Chemistry \&
 Structure of Atom

1. At 300 K and 1 atmospheric pressure, 10 mL of a hydrocarbon required 55 mL of O_{2} for complete combustion and 40 mL of CO_{2} is formed. The formula of the hydrocarbon is:
x A. $C_{4} H_{8}$
\times
B. $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{Cl}$
\times
C. $C_{4} H_{10}$
(v)
D. $C_{4} H_{6}$

General reaction for combustion of hydrocarbons:
$\mathrm{C}_{x} \mathrm{H}_{y}+\left(x+\frac{y}{4}\right) \mathrm{O}_{2} \rightarrow x \mathrm{CO}_{2}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O}$
$10 m L \quad 10\left(x+\frac{y}{4}\right) m L \quad 10 x m L$
By given data,
$10\left(x+\frac{y}{4}\right)=55$
and
$10 x=40$
Solving the above two equations:
$x=4, y=6 \Rightarrow C_{4} H_{6}$
Hence, option D is correct.

Some Basic Concepts of Chemistry \&
 Structure of Atom

2. What would be the molality of 20% (mass/mass) aqueous solution of $K I$?

Molar mass of $K I$ is $166 \mathrm{~g} \mathrm{~mol}^{-1}$A. 1.51
B. 1.35
\times
C. 1.08
\times D. 1.48
20% (mass/mass) aqueous solution of $K I$ means $20 g$ of $K I$ in $100 g$ of solution.
Mass of solution $=100 \mathrm{~g}$
Mass of solute $=20 \mathrm{~g}$
Mass of solvent=mass of solution - mass of solute
$=(100-20) g=80 g=0.08 \mathrm{~kg}$
Molar mass of $K I$ is $166 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of solute $(n)=\frac{\text { mass of KI }}{\text { molar mass of KI }}=\frac{20}{166}=0.121 \mathrm{~mol}$
So, molality of solution $m=\frac{\text { number of moles of solute }}{\text { weight of solvent (in kg) }}$
$\Rightarrow m=\frac{0.121}{0.08}=1.51 \mathrm{~mol} / \mathrm{kg}$
Hence, option (A) is the correct.

Some Basic Concepts of Chemistry \&

Structure of Atom
3. Complete combustion of 1.80 g of an oxygen containing compound ($\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{z}$) gave 2.64 g of CO_{2} and 1.08 g of $\mathrm{H}_{2} \mathrm{O}$. The percentage of oxygen in the organic compound is :
\times A. 50.33
B. 53.33
\times
C. 51.63
\times D. 63.53

General reaction:
$\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{z}+\left(x+\frac{y}{4}-\frac{z}{2}\right) \mathrm{O}_{2} \rightarrow x \mathrm{CO}_{2}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O}$
From the above equation the relation for number of moles is:
$n_{C}=n_{C O_{2}}=\frac{2.64}{44}=0.06 \mathrm{~mol}$
$n_{H}=2 \times n_{\mathrm{H}_{2} \mathrm{O}}=\frac{1.08}{18} \times 2=0.12 \mathrm{~mol}$
Mass of carbon, $m_{C}=\frac{2.64}{44} \times 12=0.72 \mathrm{~g}$
Mass of hydrogen, $m_{H}=\frac{1.08}{18} \times 2=0.12 g$
Mass of oxygen,
$m_{O}=$ Mass of hydrocarbon $-m_{C}-m_{H}$
$=1.80-0.72-0.12=0.96 g$
$\% O=\frac{0.96}{1.80} \times 100=53.33 \%$
Hence the correct answer is option (b).

Some Basic Concepts of Chemistry \&
 Structure of Atom

4. An unknown chlorohydrocarbon has 3.55% of chlorine. If each molecule of hydrocarbon has one chlorine atom only, then chlorine atoms present in 1 g of chlorohydrocarbon are:
Atomic weight of $\mathrm{Cl}=35.5 \mathrm{u}$
Avogadro constant, $N_{A}=6.023 \times 10^{23}$
x A. 6.023×10^{9}
x B. 6.023×10^{23}
× C. 6.023×10^{21}
($)$ D. 6.023×10^{20}
An unknown chlorohydrocarbon has 3.55% of chlorine. 100 g of chlorohydrocarbon has 3.55 g of chlorine.
1 g of chlorohydrocarbon will have $3.55 \times \frac{1}{100}=0.0355 \mathrm{~g}$ of chlorine.
Atomic weight of $C l=35.5 u$
Number of moles of $C l=\frac{0.0355 \mathrm{~g}}{35.5 \mathrm{~g} / \mathrm{mol}}=0.001 \mathrm{~mol}$
Number of atoms of $\mathrm{Cl}=0.001 \mathrm{~mol} \times 6.023 \times 10^{23} \mathrm{~mol}^{-1}=6.023 \times 10^{20}$
Hence, option D is correct.

Some Basic Concepts of Chemistry \&
 Structure of Atom

5. On heating, a sample of NaClO_{3}, it gets converted to NaCl with a loss of 0.16 g of oxygen. The residue is dissolved in water and precipitated as AgCl . The mass of AgCl (in g) obtained will be :
(Given molar mass of $\mathrm{AgCl}=143.5 \mathrm{~g} \mathrm{~mol}^{-1}$)
x A. 0.35
x B. 0.54
$\times \quad$ C. 0.41
(v) D. 0.48

The molar mass of $O_{2}=32 \mathrm{~g} / \mathrm{mol}$
0.16 g of oxygen $=\frac{0.16 \mathrm{~g}}{32 \mathrm{~g} / \mathrm{mol}}=0.005 \mathrm{~mol}$
$2 \mathrm{NaClO}_{3} \rightarrow 2 \mathrm{NaCl}+3 \mathrm{O}_{2}$
$\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO} 3$
3 moles of $\mathrm{O}_{2}=2$ moles of $\mathrm{NaCl}=2$ moles of AgCl .
0.005 moles of $O_{2}=0.005 \times \frac{2}{3}$ moles of AgCl

Molar mass of $\mathrm{AgCl}=143.5 \mathrm{gmol}^{-1}$
The mass of AgCl (in g) obtained will be
$143.5 \mathrm{~g} / \mathrm{mol}^{-1} \times 0.005 \times \frac{2}{3} \mathrm{~mol}=0.48 \mathrm{~g}$

Some Basic Concepts of Chemistry \&

Structure of Atom

6. 5 moles of $A B_{2}$ weigh $125 \times 10^{-3} \mathrm{~kg}$ and 10 moles of $A_{2} B_{2}$ weigh $300 \times 10^{-3} \mathrm{~kg}$.The molar mass of $A\left(M_{A}\right)$ and molar mass of $B\left(M_{B}\right)$ in $\mathrm{kg} / \mathrm{mol}$ are :
x A. $M_{A}=10 \times 10^{-3}$ and $M_{B}=5 \times 10^{-3}$
(B. $M_{A}=25 \times 10^{-3}$ and $M_{B}=50 \times 10^{-3}$C. $M_{A}=5 \times 10^{-3}$ and $M_{B}=10 \times 10^{-3}$
\times
D. $M_{A}=50 \times 10^{-3}$ and $M_{B}=25 \times 10^{-3}$

Number of moles $=\frac{\text { Given mass }}{\text { Molar mass }}$
For $A B_{2}$
$5=\frac{125}{M_{A}+2 M_{B}}$
$M_{A}+2 M_{B}=25$
For $A_{2} B_{2}$
$10=\frac{300}{2 M_{A}+2 M_{B}}$
$2 M_{A}+2 M_{B}=30$
Solving 1 and 2 ;
$M_{A}=5 \mathrm{~g} / \mathrm{mol}=5 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$
$M_{B}=10 \mathrm{~g} / \mathrm{mol}=10 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$

Some Basic Concepts of Chemistry \& Structure of Atom

7. 100 mL of a water sample contains 0.81 g of calcium bicarbonate and 0.73 g of magnesium bicarbonate. The hardness of this water sample expressed in terms of ppm of CaCO_{3} is: (molar mass of calcium bicarbonate is $162 \mathrm{~g} / \mathrm{mol}$ and magnesium bicarbonate is $146 \mathrm{~g} / \mathrm{mol}$.
x A. 1000 ppm

B. 10000 ppm
\times C. 100 ppm
\times
D. 5000 ppm
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Now, this total amount of calcium carbonate formed is to be measured by taking into consideration both calcium as well as magnesium bicarbonate.
Thus, according to the data given we have to find the total degree of hardness which is given by,
$n_{\text {eq }} . \mathrm{CaCO}_{3}=n_{\text {eq }} . \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+n_{\text {eq }} . \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
$\frac{w}{100} \times 2=\frac{0.81}{162} \times 2+\frac{0.73}{146} \times 2$
$w=1 g$
Thus, 1 g of calcium carbonate is present in 100 mL and in terms of part per million in 100 mL it is:
$\Rightarrow \frac{1}{100} \times 10^{6}$
$\Rightarrow 10^{4} \mathrm{ppm}=10000 \mathrm{ppm}$
Thus, the correct answer is option B) 10000 ppm.
8. 1 gram of a metal carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ on treatment with excess HCl produces 0.01186 mole of CO_{2}. The molar mass of $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ in gmol^{-1} is
x A. 1186B. 84.3
x
C. 118.6
\times D. 11.86
$\mathrm{M}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{MCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
0.01186 moles $\mathrm{CO}_{2}=0.01186$ moles of $\mathrm{M}_{2} \mathrm{CO}_{3}=1 \mathrm{~g} \mathrm{M}_{2} \mathrm{CO}_{3}$

Molar mass of $\mathrm{M}_{2} \mathrm{CO}_{3}=\frac{\text { Mass of } \mathrm{M}_{2} \mathrm{CO}_{3}}{\text { No. of moles of } \mathrm{M}_{2} \mathrm{CO}_{3}}=\frac{1 \mathrm{~g}}{0.01186 \mathrm{~mol}}=84.3 \mathrm{~g} / \mathrm{mol}$

Some Basic Concepts of Chemistry \&
 Structure of Atom

9. Find the mole fraction of methanol in its 5.2 molal aqueous solution.
x
A. 0.190B. 0.086
\times
C. 0.050
\times
D. 0.100

Mole fraction of solute $\left(\chi_{\text {solute }}\right)$ in aqueous solution $=\frac{\text { molality }}{\text { molality }+\frac{1000}{18}}$.

$$
=\frac{5.2}{5.2+\frac{1000}{18}}=0.086
$$

10. The density of a solution prepared by dissolving 120 g of urea (mol. mass $=60$ $\mathrm{g} / \mathrm{mol}$) in 1000 g of water is $1.15 \mathrm{~g} / \mathrm{mL}$. The molarity of this solution is
x A. $\quad 1.78 \mathrm{M}$
x
B. $\quad 1.02 \mathrm{M}$
C. 2.05 M
x
D. 0.50 M

Total weight of solution $=1000+120=1120 \mathrm{~g}$
Molarity $=\frac{120}{60} \times \frac{1000 \times 1.15}{1120}=2.05 \mathrm{M}$

Some Basic Concepts of Chemistry \&
 Structure of Atom

11. The ground state energy of hydrogen atom is -13.6 eV . The energy of second excited state of He^{+}ion in eV isA. -6.04
\times
B. -27.2
\times
C. -54.4
\times
D. -3.4

For hydrogen like species, energy of $n^{\text {th }}$ shell is given by
$(E)_{n^{t h}}=\left(E_{G N D}\right)_{H} X \frac{Z^{2}}{n^{2}}$
where,
$(E)_{n^{t h}}$ is the energy of $n^{\text {th }}$ state of hydrogen like species
$\left(E_{G N D}\right)_{H}$ is the ground state energy of hydrogen atom
Z is the atomic number
Thus,
$E_{3^{r d}}\left(H e^{+}\right)=(-13.6 \mathrm{eV}) X \frac{2^{2}}{3^{2}}=-6.04 \mathrm{eV}$
Hence, correct option is (a).

Some Basic Concepts of Chemistry \&

Structure of Atom

12. The de Broglie wavelength (λ) associated with a photoelectron varies with the frequency (v) of the incident radiation as, $\left[v_{0}\right.$ is threshold frequency]:
(A. $\lambda \propto \frac{1}{\left(v-v_{0}\right)^{\frac{3}{2}}}$
(v)
B. $\lambda \propto \frac{1}{\left(v-v_{0}\right)^{\frac{1}{2}}}$
x
C. $\lambda \propto \frac{1}{\left(v-v_{0}\right)^{\frac{1}{4}}}$
x
D. $\lambda \propto \frac{1}{\left(v-v_{0}\right)}$

In photoelectric effect, incident energy = thershold energy +KE $h v=h v_{0}+\mathrm{KE}$ $\mathrm{KE}=h v-h v_{0}$
$\mathrm{KE}=\frac{m v^{2}}{2}=h\left(v-v_{0}\right)$
$\mathrm{v}=\sqrt{\frac{2 h\left(v-v_{0}\right)}{m}}$
de broglie wavelength $\lambda=\frac{h}{m v}$
$\mathrm{v}=\frac{h}{m \lambda}$. Substituting v ,
$\mathrm{v}=\frac{h}{m \lambda}=\sqrt{\frac{2 h\left(v-v_{0}\right)}{m}}$
or $\lambda=\frac{h}{m} X \sqrt{\frac{m}{2 h\left(v-v_{0}\right)}}$
$\lambda=\sqrt{\frac{h}{2 m\left(v-v_{0}\right)}}$
$\lambda=\left(\frac{h}{2 m\left(v-v_{0}\right)}\right)^{1 / 2}$
Since h and m are constants,
$\lambda \propto\left(\frac{1}{\left(v-v_{0}\right)}\right)^{1 / 2}$
Hence, the correct option is option (b).

Some Basic Concepts of Chemistry \&

Structure of Atom

13. What is the work function of the metal if the light of wavelength $4000 \AA$ generates photoelectrons of velocity $6 \times 10^{5} \mathrm{~ms}^{-1}$ form it?
(Mass of electron $=9 \times 10^{-31} \mathrm{~kg}$
Velocity of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$
Planck's constant $=6.626 \times 10^{-34} \mathrm{Js}$
Charge of electron $=1.6 \times 10^{-19} \mathrm{JeV}^{-1}$)
x A. $\quad 0.9 \mathrm{eV}$
x B. 4.0 eV
C. 2.1 eV
x D. 3.1 eV
$h \nu=\phi+\frac{1}{2} m v^{2}$
where,
h is Planck's constant
ν is frequency of light
ϕ is work function
m is mass of electron
v is velocity of light
$\phi=h \nu-\frac{1}{2} m v^{2}$
$\phi=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{4000 \times 10^{-10}}-\frac{1}{2} \times 9 \times 10^{-31} \times\left(6 \times 10^{5}\right)^{2}$
$\phi=3.35 \times 10^{-19} J$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\sim \phi \simeq 2.1 \mathrm{eV}$
Option C is the correct answer

Some Basic Concepts of Chemistry \&
 Structure of Atom

14. The number of subshells associated with $\mathrm{n}=4$ and $\mathrm{m}=-2$ quantum numbers is:
x A. 4
x B. 8
(จ) C. 2
x D. 16
n = 4
For $n=4$, the possible 'l' values are $0,1,2,3$.
$\mathrm{I}=0 \quad \mathrm{~m}=0$
$\mathrm{I}=1 \mathrm{~m}=-1,0,+1$
$\mathrm{I}=2 \mathrm{~m}=-2,+2,-1,+1,0$
$\mathrm{I}=3 \quad \mathrm{~m}= \pm 3, \pm 2, \pm 1,0$
Answer: '2' Subshells
15. The region in the electromagnetic spectrum where the Balmer series lines appear is:
x A. Microwave
x B. Infrared
(v) C. Visible
x D. None of the above
The question should be a bonus as lines of the Balmer series belong to both UV as well as visible regions of the EM spectrum. Hence, correct answer should be option (c).

Some Basic Concepts of Chemistry \&

Structure of Atom

16. The shortest wavelength of H atom in the Lyman series is λ_{1}. The longest wavelength in the Balmer series of He^{+}is
(A. $\frac{5 \lambda_{1}}{9}$
x
B. $\frac{36 \lambda_{1}}{5}$
x
C. $\frac{27 \lambda_{1}}{5}$
(v)
D. $\frac{9 \lambda_{1}}{5}$

Shortest wavelength \rightarrow Max energy $(\infty \rightarrow 1)$ (Lyman series)
$\frac{1}{\lambda_{1}}=R_{H}(1)^{2}\left[\frac{1}{1}-0\right]$
$\frac{1}{\lambda_{1}}=R_{H} \Rightarrow R_{H}=\frac{1}{\lambda_{1}}$
For Balmer series,
$\frac{1}{\lambda}=R_{H}(2)^{2}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right] \Rightarrow R_{H}(4)\left(\frac{9-4}{36}\right)$
$\frac{1}{\lambda}=\frac{5 R_{H}}{9} \Rightarrow \lambda=\frac{9}{5 R_{H}}=\frac{9 \lambda_{1}}{5}$
Hence the correct answer is option (d).

Some Basic Concepts of Chemistry \& Structure of Atom

17. The correct statement about probability density (except at infinite distance from nucleus) is
x A. It can never be zero for 2 s orbital
(B) It can be zero for $3 p$ orbital
x C. It can be zero for 1 s orbital
x D. It can be negative for $2 p$ orbital

Probability density is the square of wave function and hence is always positive . So, option d is wrong.
Probality density changes with distance (radius) from nucleus. It becomes zero at radial nodes.

In 1s graph, the probability density curve does not become zero at any distance hence, option (c) is wrong.

In 2s graph, the probability density curve becomes zero at a point which is know as node. Hence, potion (a) is wrong.

In 3p graph, we have a minimum curve which denotes the node where probability density is zero.
Hence, option (b) is the correct statement.

Some Basic Concepts of Chemistry \&

Structure of Atom

18. The difference between radii of 3rd and 4th orbits of $L i^{2+}$ is ΔR_{1}. The difference between the radii of 3rd and 4th orbits of $H e^{+}$is ΔR_{2}. Ratio $\Delta R_{1}: \Delta R_{2}$ is
x A. $3: 2$
(B. $8: 3$
(C. $2: 3$
x D. 3:8
$r_{n}=a_{0} \frac{n^{2}}{Z}$
$r_{n} \propto \frac{n^{2}}{Z}$
$r_{3}\left(L i^{2+}\right) \propto \frac{3^{2}}{Z_{L i^{2+}}}$
$r_{4}\left(L i^{2+}\right) \propto \frac{4^{2}}{Z_{L i^{2+}}}$
$\Delta R_{1}=r_{4}-r_{3} \propto \frac{4^{2}-3^{2}}{Z_{L i^{2+}}}$
Similarly for He^{+}
$\Delta R_{2}=r_{4}-r_{3} \propto \frac{4^{2}-3^{2}}{Z_{H e^{+}}}$
$\therefore \quad \frac{\Delta R_{1}}{\Delta R_{2}}=\frac{Z_{H E^{+}}}{Z_{L i^{2+}}}=\frac{2}{3}$
Hence, (c) is the correct option

Some Basic Concepts of Chemistry \&
 Structure of Atom

19. The number of electron associated with quantum numbers $n=5, m_{s}=+\frac{1}{2}$ is
x A. 15
x B. 50C. 25
x D. 11
The number of orbitals possible in a shell with principal quantum number ' n ' is ' n ' . Each orbital can have one electron each of + and - spin.
Number of electrons with $m_{s}=+\frac{1}{2}$ is also 25
Hence, the correct answer is option (c).
20. The radius of the second Bohr orbit, in terms of the Bohr radius, a_{0}, in $L i^{2+}$ is:
(x) A. $\frac{2 a_{0}}{3}$
(B. $\frac{2 a_{0}}{9}$
(C. $\frac{4 a_{0}}{9}$
(v)
D. $\frac{4 a_{0}}{3}$
$r=a_{0} \frac{n^{2}}{Z} \AA$
Bohr's radius of $L i^{2+}$ ion for $\mathrm{n}=2$
$=a_{0} \frac{n^{2}}{Z}$
$=\frac{4 a_{0}}{3}$
Hence, option (d) is the correct answer.

Some Basic Concepts of Chemistry \&
 Structure of Atom

21. The ratio of the mass percentages of ' C and H ' and $\mathrm{C} \& \mathrm{O}$ of a saturated acyclic organic compound ' X ' are 4:1 and 3:4 respectively. Then, the moles of oxygen gas required for complete combustion of two moles of organic compound ' X ' is

Accepted Answers
$5 \quad 5.0 \quad 5.00$
Solution:
$C: H=4: 1$
$C: O=3: 4$
Mass ratio
$C: H: O$
12:3:16
Mole ratio:
C : H : O
$\frac{12}{12}: \frac{3}{1}: \frac{16}{16}$
1: 3: 1
Empirical formula $=\mathrm{CH}_{3} \mathrm{O}$
Molecular formula $=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$
(saturated acyclic organic compound)
General reaction:
$\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{z}+\left(x+\frac{y}{4}-\frac{z}{2}\right) \mathrm{O}_{2} \rightarrow x \mathrm{CO}_{2}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}+\frac{5}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
1 mol of organic compound reacts with 2.5 mol of oxygen
So,
2 moles of organic compound reacts with 5 moles of oxygen.

Some Basic Concepts of Chemistry \&
 Structure of Atom

22. Ferrous sulphate heptahydrate is used to fortify foods with iron. The amount (in grams) of the salt required to achieve 10 ppm of iron in 100 kg of wheat
(Rounded-off to the nearest integer) is
[Atomic weight : $\mathrm{Fe}=55.85 \mathrm{~S}=32.00 \mathrm{O}=16.00$]
Accepted Answers
$5 \quad 5.0 \quad 5.00$
Solution:
$10 \mathrm{ppm}=\frac{\text { Mass of Fe(in g) }}{100 \times 1000} \times 10^{6}$
Mass of $F e=1 g$
Molar mass of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=278 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of Fe is 56 g in 1 mol
i.e.

1 g in $\frac{1}{56} \mathrm{~mol}$.
The amount (in grams) of the salt required to achieve 10 ppm of iron in 100 kg of wheat
$\Rightarrow \frac{1}{56} \times 278=4.96 g \approx 5 g$
23. The number of atoms of Na in 8 g of its sample is $x \times 10^{23}$. The value of $\mathrm{x}($ rounded off to the nearest integer) is
[Given : $N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
and Atomic mass of $\mathrm{Na}=23.0 \mathrm{u}$]

Accepted Answers
$2 \quad 2.0 \quad 2.00$
Solution:
1 mol of $N a$ or 23 g of $N a$ has 6.02×10^{23} atoms.
$8 g$ of $N a$ has:
$\frac{8}{23} \times 6.02 \times 10^{23}$ atoms
$\Rightarrow 2.09 \times 10^{23}$ atoms
$\approx 2 \times 10^{23}$ atoms
The value of x is 2

Some Basic Concepts of Chemistry \&
 Structure of Atom

24. 100 g of propane is completely reacted with 1000 g of oxygen. The mole fraction of carbon dioxide in the resulting mixture is $x \times 10^{-2}$. The value of ' x ' is (Rounded off to the nearest integer) is
[Atomic weight : $\mathrm{H}=1.008 ; \mathrm{C}=12.00 ; \mathrm{O}=16.00$]
Accepted Answers
$19 \quad 19.0 \quad 19.00$
Solution:
100 g of propane $=2.27 \mathrm{~mol}$
1000 g oxygen $=31.25 \mathrm{~mol}$
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
From the equation 1 mol of propane reacts with 5 mol of oxygen to give 3 moles of carbon dioxide and 4 moles of water
So, by stoichiometric calculations:
2.27 mol of propane will react with 11.35 mol oxygen to give 6.81 mol carbon dioxide and 9.08 mol water

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$t=0 \begin{array}{lllll} & 2.27 & 31.25 & 0 & 0\end{array}$
$t=\infty \quad 0 \quad 19.9 \quad 6.81 \quad 9.08$
mole fraction of CO_{2} in the final reaction mixture (heterogenous)
$X_{C O_{2}}=\frac{6.81}{19.9+6.81+9.08}$
$=0.1902=19.02 \times 10^{-2}$
Value of x is 19

Some Basic Concepts of Chemistry \& Structure of Atom

25. NaClO_{3} is used even in spacecrafts to produce O_{2}. The daily consumption of pure O_{2} by a person is 492 L at 1 atm and 300 K . How much amount of NaClO_{3} in
grams, is required to produce O_{2} for the daily consumption of a person at STP?
$\mathrm{NaClO}_{3}(s)+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{NaC1}(\mathrm{~s})+\mathrm{FeO}(\mathrm{s})$

Accepted Answers
21302130.02130 .00

Solution:
$\mathrm{NaClO}_{3}(\mathrm{~s})+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{NaC1}(\mathrm{~s})+\mathrm{FeO}(\mathrm{s})$
Moles of NaClO_{3} required $=$ moles of O_{2} produced
Moles of O_{2} required
$n=\frac{P V}{R T}=\frac{1 \times 492}{0.082 \times 300}=20 \mathrm{~mol}$
Molar mass of $\mathrm{NaClO}_{3}=23+35.5+(3 \times 16)=106.5 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore Mass of NaClO_{3} required $=20 \times 106.5=2130 \mathrm{~g}$

Some Basic Concepts of Chemistry \& Structure of Atom

26. A metal surface is exposed to 500 nm radiation. The threshold frequency of the metal for photoelectric current is $4.3 \times 10^{14} \mathrm{~Hz}$. The velocity of ejected electron is $\times 10^{5} \mathrm{~ms}^{-1}$. (Nearest integer)
[Use : $h=6.63 \times 10^{-34} \mathrm{Js}, m_{e}=9.0 \times 10^{-31} \mathrm{~kg}$]
Accepted Answers
$5 \quad 5.0 \quad 5.00$
Solution:
$h \nu=h \nu_{0}+\frac{1}{2} m_{e} v^{2}$
$\frac{h c}{\lambda}=h \nu_{0}+\frac{1}{2} m_{e} v^{2}$
Here,
$\nu_{0}=$ threshold frequency of the metal
h is planck's constant
m_{e} is mass of electron
v is velocity of ejected electron
Putting values:

$$
\begin{aligned}
& \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{500 \times 10^{-9}}=6.63 \times 10^{-34} \times 4.3 \times 10^{14}+\frac{1}{2} \times 9 \times 10^{-31} \times v^{2} \\
& v=5 \times 10^{5} \mathrm{~ms}^{-1}
\end{aligned}
$$

Some Basic Concepts of Chemistry \&
 Structure of Atom

27. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is equal to $\frac{h^{2}}{x m a_{0}^{2}}$. The value of 10 x is .
(a_{0} is radius of Bohr's orbit) (Nearest integer)
[Given: $\pi=3.14$]
Accepted Answers
31553155.03155.00

Solution:
Kinetic energy of an electron in nth orbit of Bohr atom :
$\frac{1}{2} m v^{2}=\frac{(m v)^{2}}{2 m}$
In Bohr's model,
$m v r=\frac{n h}{2 \pi}$ or
$m v=\frac{n h}{2 \pi r}$
$K E=\frac{n^{2} h^{2}}{8 \pi^{2} m r^{2}}$
For 2nd orbit of H -atom
$n=2$ and $r=4 a_{0}$
$\therefore K E=\frac{4 h^{2}}{8 \pi^{2} m \times 16 a_{0}^{2}}=\frac{h^{2}}{315.5 m a_{0}^{2}}$
$\therefore x=315.5 ; 10 x=3155$

Some Basic Concepts of Chemistry \&
 Structure of Atom

28. The number of photons emitted by a monochromatic (single frequency) infrared range finder of power 1 mW and wavelength of 1000 nm , in 0.1 second is $x \times 10^{13}$. The value of x is. (Nearest integer)
$\left(h=6.63 \times 10^{-34} J s, c=3.00 \times 10^{8} \mathrm{~ms}^{-1}\right)$
Accepted Answers
$50 \quad 50.0 \quad 50.00$
Solution:
Power $=1 \mathrm{~mW}$
$=10^{-3} J$ in 1 sec .
$=10^{-4} J$ in 0.1 sec .
\therefore Energy $=\frac{n h c}{\lambda}$
$10^{-4}=\frac{n \times 6.63 \times 10^{-34} \times 3 \times 10^{8}}{1000 \times 10^{-9}}$
$n=50.2 \times 10^{13}$
$\therefore \quad x=50$
29. The value of magnetic quantum number of the outermost electron of $Z n^{+}$ion is .
(Integer answer)
Accepted Answers
0
0.0

Solution:
$Z n(30)=[A r] 4 s^{2} 3 d^{10}$
$Z n^{+}=[A r] 4 s^{1} 3 d^{10}$
Outermost electron is present in 4 s
$\mathrm{n}=4 \quad \mathrm{I}=0 \quad m_{1}=0$

Some Basic Concepts of Chemistry \&

Structure of Atom
30. A 50 watt bulb emits monochromatic red light of wavelength of 795 nm . The number of photons emitted per second by the bulb is $x \times 10^{20}$. The value of x is .
(Nearest integer)
[Given: $h=6.63 \times 10^{-34} \mathrm{Js}$ and $c=3.0 \times 10^{8} \mathrm{~ms}^{-1}$]
Accepted Answers
$2 \quad 2.0 \quad 2.00$
Solution:
$E=n h \nu=\frac{n h c}{\lambda}$
50 watt bulb emits 50 J energy per second.
$50=\frac{n \times 6.63 \times 10^{-34} \times 3 \times 10^{8}}{795 \times 10^{-9}}$
$n=\frac{50 \times 795 \times 10^{-9}}{6.63 \times 10^{-34} \times 3 \times 10^{8}}$
$n=2 \times 10^{20}$
Value of $x=2$

