Mock Board Exam MATHEMATICS SOLUTIONS

Question 1

(i) The order and degree respectively of differential equation $\left(\frac{dy}{dx}\right)^2 + 3y\left(\frac{d^2y}{dx^2}\right) = 4$ are [1]

- $\mathsf{A.}\ 2 \ and \ 1$
- B. 1 and 2
- C. 2 and 2
- D. 3 and 2

Answer: (A) 2 and 1

Solution:

 $\left(\frac{dy}{dx}\right)^2 + 3y\left(\frac{d^2y}{dx^2}\right) = 4$

Order of a differential equation is defined to be that of the highest order derivative it contains. Degree of a differential equation is defined as the power to which the highest order derivative is raised.

Thus, order of the differential equation is 2 and degree is 1.

```
(ii) If \int_{-2}^{2} f(x)dx = 0, then f(x) may be [1]
A. x
```

- B. *x*
- C. $(x + x^3)^3$
- D. $ln ln (x^2)$

Answer: $(C) (x + x^3)^3$ Solution:

We know that $\int_{-a}^{a} f(x)dx = 0$, if f(x) is an odd function. And $(x + x^{3})^{3}$ is an odd function. Because for $f(x) = (x + x^{3})^{3}$, we get $f(-x) = (-x + (-x)^{3})^{3} = -(x + x^{3})^{3} = -f(x)$

(iii) The value of $\int \left(\frac{12x^{11}+8^x \ln \ln 8}{x^{12}+8^x}\right) dx$ is [1] (where c is the constant of integration) A. $\ln \ln |x^{12} + 8^x| + c$ B. $\frac{x^{13}}{13} + 8^x \ln \ln 8 + c$ C. $\ln \ln |x^{13} + 8^x \ln \ln 8| + c$ D. $\frac{(x^{12}+8^x)^2}{2} + c$ Answer: (A) $ln ln |x^{12} + 8^x| + c$ Solution: Let $I = \int \left(\frac{12x^{11} + 8^x ln ln 8}{x^{12} + 8^x}\right) dx$ Put $x^{12} + 8^x = t$ $\Rightarrow (12x^{11} + 8^x ln ln 8) dx = dt$ $I = \int \frac{dt}{t} = ln ln |t| + c$ $\therefore I = ln ln |x^{12} + 8^x| + c$

(iv) The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is

A. $e^{x} + e^{-y} = C$ B. $e^{x} + e^{y} = C$ C. $e^{-x} + e^{y} = C$ D. $e^{-x} + e^{-y} = C$

Answer: (A) $e^x + e^{-y} = C$ Solution: Given differential equation, $\frac{dy}{dx} = e^x \cdot e^y$ Separating variables and integrating, $\int e^{-y} dy = \int e^x dx$ $\Rightarrow -e^{-y} = e^x - C$, where -C is constant of integration. $\therefore e^x + e^{-y} = C$

- (v) Let *A* and *B* be the two events such that P(A) = 0.3 and $P(A \cup B) = 0.8$. If *A* and *B* [1] are independent events, then P(B) is
 - A. $\frac{5}{7}$
 - B. $\frac{3}{7}$
 - C. $\frac{1}{2}$
 - D. $\frac{1}{7}$

Answer: (A) $\frac{5}{7}$

Solution:

For independent events, $P(A \cap B) = P(A) \cdot P(B)$ We know that $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\Rightarrow 0.8 = 0.3 + P(B) - 0.3P(B)$

 $\therefore P(B) = \frac{5}{7}$

(vi) Two persons A and B speak the truth with the probabilities 0.7 and 0.8 respectively. [1] The probability that they will say the same thing while describing a single event is
 A. 0.56

[1]

- B. 0.62
- C. 0.5
- D. 0.42

Answer: (*B*)0.62

Solution:

Let A_1 be the event that A speaks the truth and B_1 be the event that B speaks the truth. $\Rightarrow P(A_1) = 0.7$ and $P(B_1) = 0.8$ Probability that they will say same thing while describing a single event = Both narrate same event truthfully *or* Both lie about event = $P(A_1) \cdot P(B_1) + (1 - P(A_1)) \cdot (1 - P(B_1))$ = $0.7 \times 0.8 + (1 - 0.7)(1 - 0.8)$ = 0.56 + 0.06= 0.62

Question 2

(a) The value of $\int (2x + 4x) dx$ is

Answer: $3x + \frac{sinsin 2x}{2} + c$ Solution:

$$\int (2x + 4x) dx$$

= $\int [2(x + x) + 2x] dx$
= $\int [2 + (1 + \cos \cos 2x)] dx$ (: $x + x = 1$ and $\cos \cos 2x = 2x - 1$)
= $\int (3 + \cos \cos 2x) dx$
= $3x + \frac{\sin \sin 2x}{2} + c$

OR

(b) The value of
$$\int \frac{1}{x^2 + 13x - 2} dx$$

Answer:
$$\frac{1}{\sqrt{177}} \log \log \left| \frac{2x+13-\sqrt{177}}{2x+13+\sqrt{177}} \right| + c$$

Solution:
Let $I = \int \frac{1}{x^2+13x-2} dx$
Consider $x^2 + 13x - 2 = x^2 + 13x + \frac{169}{4} - \frac{169}{4} - 2 = \left(x + \frac{13}{2}\right)^2 - \frac{177}{4}$
 $I = \int \frac{1}{\left(x + \frac{13}{2}\right)^2 - \left(\frac{\sqrt{177}}{2}\right)^2} dx$
 $= \frac{1}{2\left(\frac{\sqrt{177}}{2}\right)} \log \log \left| \frac{x + \frac{13}{2} - \frac{\sqrt{177}}{2}}{x + \frac{13}{2} + \frac{\sqrt{177}}{2}} \right| + c$
 $\therefore I = \frac{1}{\sqrt{177}} \log \log \left| \frac{2x+13-\sqrt{177}}{2x+13+\sqrt{177}} \right| + c$

(a) The general solution of the differential equation $x \frac{dy}{dx} + 2y = x^2$ ($x \neq 0$) is

Answer: $4x^2y = x^4 + C$ Solution: Given differential equation, $\frac{dy}{dx} + \frac{2y}{x} = x$ Comparing it with linear form, $\frac{dy}{dx} + Py = Q$, where *P* and *Q* are the functions of *x* only. We have, $P = \frac{2}{x}$ and Q = x $I.F. = e^{\int Pdx} = e^{\int \frac{2}{x}dx} = e^{2lnln x} = x^2$ Solution of the differential equation is given by $y(I.F.) = \int Q(I.F.) + K$ $\Rightarrow yx^2 = \int (x \cdot x^2) dx + K$ $\Rightarrow yx^{2} = \frac{x^{4}}{4} + K$ $\therefore 4x^{2}y = x^{4} + C \quad (C = 4K)$

OR

(b) Find the differential equation which has $y = c_1 e^x + c_2 e^{-x}$ as the general solution.

Answer: $\frac{d^2y}{dx^2} - y = 0$ Solution: $y = c_1 e^x + c_2 e^{-x} \cdots (i)$ Differentiating on both sides, we get $\frac{dy}{dx} = c_1 e^x - c_2 e^{-x}$ Differentiating on both sides again, we get $\frac{d^2y}{dx^2} = c_1 e^x + c_2 e^{-x}$ $\Rightarrow \frac{d^2 y}{dx^2} = y \quad [From (i)]$ $\therefore \frac{d^2y}{dx^2} - y = 0$ is the required differential equation.

Question 4

Evaluate $\int_{\pi/6}^{\pi/3} \frac{1}{1+\sqrt{\cot\cot x}}$

$$\frac{1}{1+\sqrt{\cot \cot x}} dx$$

Answer:
$$\frac{\pi}{12}$$

Solution:
Let $I = \int_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot \cot x}} dx$

$$\Rightarrow I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin \sin x}}{\sqrt{\sin \sin x} + \sqrt{\cos \cos x}} dx \quad \cdots (i)$$

We know that $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$
$$\therefore I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin \sin(\frac{\pi}{2}-x)}}{\sqrt{\sin \sin(\frac{\pi}{2}-x)} + \sqrt{\cos \cos(\frac{\pi}{2}-x)}} dx$$

$$= \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos \cos x}}{\sqrt{\sin \sin x} + \sqrt{\cos \cos x}} dx \quad \cdots (ii)$$

Adding (i) and (ii), we get
$$2I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin \sin x} + \sqrt{\cos \cos x}}{\sqrt{\sin \sin x} + \sqrt{\cos \cos x}} dx$$

$$\Rightarrow 2I = \int_{\pi/6}^{\pi/3} 1 dx$$

$$\Rightarrow 2I = \frac{\pi}{3} - \frac{\pi}{6}$$

$$\therefore I = \frac{\pi}{12}$$

(a) The probability distribution of *X* is as follows:

	x	0	1	2	3	4
P(X)	(x = x)	0.1	k	2 <i>k</i>	2 <i>k</i>	k
Then th	e value of	P(X > 3) is				

Answer: $\frac{9}{20}$ Solution:

We know that $\sum P(X = x) = 1$ $\Rightarrow P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4) = 1$ $\Rightarrow 0.1 + +k + 2k + 2k + k = 1$ $\Rightarrow k = \frac{3}{20}$ $P(X \ge 3) = P(x = 3) + P(x = 4)$ $\Rightarrow P(X \ge 3) = 2\left(\frac{3}{20}\right) + \frac{3}{20}$ $\therefore P(X \ge 3) = \frac{9}{20}$

OR

(b) The probability of getting 3 exactly twice in 5 throws of a fair die is

Answer:
$$\frac{1}{3}\left(\frac{5}{6}\right)^4$$

Solution:

The repeated tossing of a die forms a binomial distribution.

Let *X* represent the number of times of getting 3 in 5 throws of the die.

Probability of getting 3 in a single throw of a die, $p = \frac{1}{6}$

Probability of not getting 3, $q = 1 - \frac{1}{6} = \frac{5}{6}$

We have to find probability of getting 3 exactly twice in 5 throws of a die. Using Binomial distribution,

 $P(X = 2) = 5C_2 \cdot p^2 \cdot q^{5-2}$

[4]

$$= 5C_2 \cdot \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^3$$
$$= \frac{5 \times 4}{2 \times 1} \times \left(\frac{1}{6}\right)^2 \times \left(\frac{5}{6}\right)^3$$
$$\therefore P(X = 2) = \frac{1}{3} \left(\frac{5}{6}\right)^4$$

The value of $\int \frac{1}{(2x+3)(x-4)} dx$

Answer: $ln ln \left| \frac{x-4}{2x+3} \right|^{\frac{1}{11}} + C$ Solution: Let $I = \int \frac{1}{(2x+3)(x-4)} dx$ Consider $\frac{1}{(2x+3)(x-4)} = \frac{A}{2x+3} + \frac{B}{x-4}$ $\Rightarrow 1 = A(x-4) + B(2x+3)$ For x = 4, $1 = B(2(4) + 3) \Rightarrow B = \frac{1}{11}$ For $x = -\frac{3}{2}$, $1 = A(-\frac{3}{2} - 4) \Rightarrow A = -\frac{2}{11}$ $\therefore I = \frac{1}{11} \int (\frac{-2}{2x+3} + \frac{1}{x-4}) dx$ $= \frac{1}{11} [ln ln |x-4| - ln ln |2x+3|] + C$ $= \frac{1}{11} ln ln \left| \frac{x-4}{2x+3} \right| + C$, where *C* is the constant of integration.

Question 7

Every morning, Mr. Ramesh either reads a book or watches T.V. The probability that he watches T.V. is $\frac{4}{5}$. If he watches T.V., there is a probability of $\frac{3}{4}$ that he falls asleep. If he reads a book, the probability that he falls asleep is $\frac{1}{4}$. On one evening, Mr. Ramesh is found to be asleep. The probability that he watched T.V., is

Answer: $\frac{12}{13}$ Solution:

Probability that Ramesh watches T.V., $P(A) = \frac{4}{5}$. Probability that Ramesh reads book, $P(B) = 1 - \frac{4}{5} = \frac{1}{5}$ Let *S* be the event that Ramesh is asleep. Probability that Ramesh falls asleep while watching T.V. is $P(S|A) = \frac{3}{4}$ Probability that Ramesh falls asleep while reading book is $P(S|B) = \frac{1}{4}$

By Bayes' theorem,

[4]

[6]

$$P(A|S) = \frac{P(A) \cdot P(S|A)}{\overline{P(A)} \cdot P(S|A) + P(B) \cdot P(S|B)} = \frac{\frac{4}{5} \times \frac{3}{4}}{\frac{4}{5} \times \frac{3}{4} + \frac{1}{5} \times \frac{1}{4}} = \frac{12}{13}$$

(a) Evaluate $\int \frac{(x^2+1)e^x}{(x+1)^2} dx$

Answer: $e^{x}\left(\frac{x-1}{x+1}\right) + C$ Solution:

Let
$$I = \int \frac{(x^2 + 1)e^x}{(x + 1)^2} dx$$

 $\Rightarrow I = \int \frac{e^x (x^2 - 1 + 1 + 1)}{(x + 1)^2} dx$
 $\Rightarrow I = \int e^x \left[\frac{x^2 - 1}{(x + 1)^2} + \frac{2}{(x + 1)^2} \right] dx$

$$\Rightarrow I = \int e^x \left[\frac{x-1}{x+1} + \frac{2}{(x+1)^2} \right] dx$$

Consider $f(x) = \frac{x-1}{x+1}$, then $f'(x) = \frac{2}{(x+1)^2}$
Thus, the given integral is of the form $X[f(x)] + f'(x)]$

Thus, the given integral is of the form $e^x[f(x) + f'(x)]$. Therefore, $I = \int \frac{(x^2+1)e^x}{(x+1)^2} dx = e^x \left(\frac{x-1}{x+1}\right) + C$

OR

(b) Evaluate
$$\int_{0}^{\pi/2} \log \log x \, dx$$

Answer: $-\frac{\pi}{2} \log \log 2$
Solution:
Let $I = \int_{0}^{\frac{\pi}{2}} \log \log x \, dx \, \cdots (1)$
We know that $\int_{a}^{b} f(x) = \int_{a}^{b} f(a+b-x)$
 $\therefore I = \int_{0}^{\frac{\pi}{2}} \log \log g(x) \, dx \, \cdots (2)$
Adding the equations (1) and (2), we get
 $2I = \int_{0}^{\frac{\pi}{2}} [\log \log (\sin \sin x \, x) + \log \log (\cos \cos x)] \, dx$
 $\Rightarrow 2I = \int_{0}^{\frac{\pi}{2}} [\log \log (\sin \sin x \, \cos \cos x) + \log \log 2 - \log \log 2] \, dx \, (\sin \sin 2x \, \cos x) + \log \log 2)$
 $\Rightarrow 2I = \int_{0}^{\frac{\pi}{2}} [\log \log (\sin \sin 2x) - \log \log 2] \, dx \, (\sin \sin 2x \, = 2 \sin \sin x \, \cos \cos x)$
 $\Rightarrow 2I = \int_{0}^{\frac{\pi}{2}} \log \log \sin \sin 2x \, dx - \int_{0}^{\frac{\pi}{2}} \log \log 2 \, dx$
Put $2x = t$ in the first integral. Then, $2 \, dx = dt$

[6]

Lower limit: when x = 0, t = 0 and Upper limit: when $x = \frac{\pi}{2}$, $t = \pi$

$$\therefore 2I = \frac{1}{2} \int_0^{\pi} \log \log \sin \sin t \, dt - \int_0^{\frac{\pi}{2}} \log \log 2 \, dx$$

$$\Rightarrow 2I = \frac{2}{2} \int_0^{\frac{\pi}{2}} \log \log \sin \sin t \, dt - \frac{\pi}{2} \log \log 2 \quad (\because \sin \sin (\pi - x) = \sin \sin x)$$

$$\Rightarrow 2I = \int_0^{\frac{\pi}{2}} \log \log \sin \sin x \, dx - \frac{\pi}{2} \log \log 2 \quad (By \text{ changing variable } t \text{ to } x)$$

$$\Rightarrow 2I = I - \frac{\pi}{2} \log \log 2$$

$$\therefore I = -\frac{\pi}{2} \log \log 2$$

SECTION B – 8 MARKS

Question 9

(i) The equation of plane passing through A(1, 2, 3) and having 3, 2, 5 as the direction ratios of the normal to the plane, is

- A. 3x + 2y 6z = 9
- B. 3x + 2y + 5z = 22
- C. 3x + 4y 5z = 18
- D. 3x 2y + 5z = 22

Answer: (*B*) 3x + 2y + 5z = 22Solution:

Equation of plane passing through (x_1, y_1, z_1) and having direction ratios of normal *a*, *b*, *c* is given by $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$.

: Required equation of plane is 3(x-1) + 2(y-2) + 5(z-3) = 0

or, 3x + 2y + 5z = 22

(ii) Find the acute angle between the planes $\vec{r} \cdot (\hat{\iota} + \hat{\jmath} - 2\hat{k}) = 8$ and $\vec{r} \cdot (-2\hat{\iota} + \hat{\jmath} + \hat{k}) = 3$.

- A. $\frac{\pi}{6}$
- B. 0
- C. $\frac{\pi}{2}$ D. $\frac{\pi}{3}$

Answer: $(D)\frac{\pi}{2}$

Solution:

Normal vector of given planes are $\overrightarrow{n_1} = \hat{\imath} + \hat{\jmath} - 2\hat{k}$ and $\overrightarrow{n_2} = -2\hat{\imath} + \hat{\jmath} + \hat{k}$. Angle between the planes is, $\cos \cos \theta = \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}||\overrightarrow{n_2}|} \right|$ $\Rightarrow \cos \cos \theta = \left| \frac{1(-2)+1(1)+(-2)(1)}{\sqrt{1^2+1^2+(-2)^2}\sqrt{(-2)^2+1^2+1^2}} \right|$ $\Rightarrow \cos \cos \theta = \left| -\frac{3}{6} \right| = \frac{1}{2}$

 $\therefore \theta = \frac{\pi}{3}$

Question 10

If lines OA, OB are drawn from O with direction cosines proportional to (1, -2, -1) and (3, -2, 3), then the direction cosines of the normal to the plane AOB is

Answer: $\left(-\frac{4}{\sqrt{29}}, -\frac{3}{\sqrt{29}}, \frac{2}{\sqrt{29}}\right)$ Solution: $\overrightarrow{OA} = \hat{\imath} - 2\hat{\jmath} - \hat{k}$ $\overrightarrow{OB} = 3\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ DRs of normal to the plane *AOB* is. $\overrightarrow{OA} \times \overrightarrow{OB} = |\hat{\imath} \hat{\jmath} \hat{k} 1 - 2 - 1 3 - 2 3| = \hat{\imath}(-6 - 2) - \hat{\jmath}(3 + 3) + \hat{k}(-2 + 6)$ $= -8\hat{\imath} - 6\hat{\jmath} + 4\hat{k}$ So, d.r.'s of normal is (-4, -3, 2)Hence, d.c.'s of normal is $\left(-\frac{4}{\sqrt{29}}, -\frac{3}{\sqrt{29}}, \frac{2}{\sqrt{29}}\right)$

Question 11

The area of the region bounded by $x^2 = 16y$, y = 1, y = 4 and x = 0 in the first quadrant is

Answer: $\frac{56}{3}$ sq. units Solution:

Area =
$$\int_{1}^{4} 4\sqrt{y} \, dy$$
$$= 4 \left[\frac{(y^{3/2})}{3/2} \right]_{1}^{4}$$
$$= \frac{8}{3} [8-1]$$
$$\therefore Area = \frac{56}{3} \text{ sq. units}$$

[2]

- - - -

Question 12

(i) The two lines of regression are x + 2y - 5 = 0 and 2x + 3y - 8 = 0 and variance of x is 12. Find the variance of y.

- A. 2
- **B**. 1
- C. 2.5
- D. 1.5

Answer: (A) 2

Solution:

If possible, suppose that regression line, x on y is 2x + 3y - 8 = 0 and y on x, is

$$x + 2y - 5 = 0$$

$$\therefore b_{xy} = -\frac{3}{2} \text{ and } b_{yx} = -\frac{1}{2}$$

Since $r^2 = b_{xy} \cdot b_{yx} = -\frac{3}{2} \times -\frac{1}{2} = \frac{3}{4} < 1$

$$\therefore \text{ Our assumption is right.}$$

$$\therefore \text{ Coefficient of correlation, } r = -\frac{\sqrt{3}}{2}$$

We know that $b_{yx} = r \cdot \frac{\sigma_y}{\sigma_x} = -\frac{\sqrt{3}}{2} \times \frac{\sigma_y}{\sqrt{12}}$

$$\Rightarrow -\frac{1}{2} = -\frac{\sqrt{3}}{2} \times \frac{\sigma_y}{\sqrt{12}}$$

$$\therefore \sigma_y = 2$$

- (ii) Let the regression line of x on y be, mx y + 10 = 0 and y on x be, -2x + 5y + 14 = 0. If the coefficient of correlation between x and y is $\frac{1}{\sqrt{10}}$, then the value of m is
 - A. 6
 - **B**. 4
 - C. 2
 - D. 8

Answer: (*B*) 4 Solution:

Given, regression line of x on y: mx - y + 10 = 0 $\Rightarrow mx = y - 10$ $\Rightarrow x = \frac{y}{m} - \frac{10}{m}$ Comparing with $x = (b_{xy})y + c$, we get $b_{xy} = \frac{1}{m}$ Similarly, $b_{yx} = \frac{2}{5}$ We know that $r^2 = b_{xy} \times b_{yx} = \frac{1}{10}$ $\Rightarrow \frac{2}{5m} = \frac{1}{10}$ $\therefore m = 4$

Find the value of $b_{yx} - b_{xy}$ for the following observations: (3, 6), (4, 5), (5, 4), (6, 3), (7, 2)

Answer: 0

Solution:

x	у	<i>x</i> ²	y^2	xy
3	6	9	36	18
4	5	16	25	20
5	4	25	16	20
6	3	36	9	18
7	2	49	4	14
$\sum x = 25$	$\sum y = 20$	$\sum x^2 = 135$	$\sum y^2 = 90$	$\sum xy = 90$

We know that
$$b_{xy} = \frac{\sum xy - \frac{\sum x \cdot \sum}{n}}{\sum y^2 - \frac{(\sum y)^2}{n}}$$

 $\Rightarrow b_{xy} = \frac{90 - \frac{25 \times 20}{5}}{90 - \frac{400}{5}} = \frac{90 - 100}{90 - 80} = -1$

Also,
$$b_{yx} = \frac{\sum xy - \frac{\sum x \cdot \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

 $\Rightarrow b_{yx} = \frac{90 - \frac{25 \times 20}{5}}{135 - \frac{625}{5}} = \frac{90 - 100}{135 - 125} = -1$
 $\therefore b_{yx} = -1$

Hence, the value of $b_{yx} - b_{xy}$ is 0.

Question 14

[4]

A company produces two types of items *P* and *Q*. Manufacturing of both items requires the metals gold and copper. Each unit of item *P* requires 3 grams of gold and 1 gram of copper while that of item *Q* requires 1 gram of gold and 2 grams of copper. The company has 9 grams of gold and 8 grams of copper in its store. If each unit of item *P* makes a profit of ₹50 and each unit of item *Q* makes a profit of ₹60 then determine the number of units of each item that the company should produce to maximise profit. What is the maximum profit?

Answer: 280

Solution:

Let the number of units item A to be produced be x and that of B to be produced be y. Let z be the total profit in rupees.

Items		Gold	Copper	Profit per unit(₹)
Р	x	3	1	50
Q	у	1	2	60
Availability		9	8	

The given data can be put in tabular form as:

Thus, mathematical formulation of given LPP is Maximize z = 50x + 60ySubject to constraints $3x + y \le 9$ $x + 2y \le 8$ $x, y \ge 0$

The shaded region OABC is the feasible region. The corner points are O(0,0), A(3,0), B(2,3), C(0,4). At O(0,0), z = 0At $A(3,0), z = 50 \times 3 + 60 \times 0 = 150$ At $B(2,3), z = 50 \times 2 + 60 \times 3 = 280$ At $C(0,4), z = 50 \times 0 + 60 \times 4 = 240$ $\therefore z$ is maximum at x = 2 and y = 3.

∴ For maximum profit, company should produce 2 units of item *P* and 3 units of item *Q*. Hence, maximum profit is ₹280.