Mock Board Exam
 MATHEMATICS
 SOLUTIONS

Question 1

(i) The order and degree respectively of differential equation $\left(\frac{d y}{d x}\right)^{2}+3 y\left(\frac{d^{2} y}{d x^{2}}\right)=4$ are
A. 2 and 1
B. 1 and 2
C. 2 and 2
D. 3 and 2

Answer: (A) 2 and 1

Solution:

$\left(\frac{d y}{d x}\right)^{2}+3 y\left(\frac{d^{2} y}{d x^{2}}\right)=4$
Order of a differential equation is defined to be that of the highest order derivative it contains.
Degree of a differential equation is defined as the power to which the highest order derivative is raised.
Thus, order of the differential equation is 2 and degree is 1 .
(ii) If $\int_{-2}^{2} f(x) d x=0$, then $f(x)$ may be
[1]
A. x
B. x
C. $\left(x+x^{3}\right)^{3}$
D. $\ln \ln \left(x^{2}\right)$

Answer: $(C)\left(x+x^{3}\right)^{3}$

Solution:

We know that $\int_{-a}^{a} f(x) d x=0$, if $f(x)$ is an odd function.
And $\left(x+x^{3}\right)^{3}$ is an odd function.
Because for $f(x)=\left(x+x^{3}\right)^{3}$, we get
$f(-x)=\left(-x+(-x)^{3}\right)^{3}=-\left(x+x^{3}\right)^{3}=-f(x)$
(iii) The value of $\int \quad\left(\frac{12 x^{11}+8^{x} \ln \ln 8}{x^{12}+8^{x}}\right) d x$ is
[1]
(where c is the constant of integration)
A. $\ln \ln \left|x^{12}+8^{x}\right|+c$
B. $\frac{x^{13}}{13}+8^{x} \ln \ln 8+c$
C. $\ln \ln \left|x^{13}+8^{x} \ln \ln 8\right|+c$
D. $\frac{\left(x^{12}+8^{x}\right)^{2}}{2}+c$

Answer: $(A) \ln \ln \left|x^{12}+8^{x}\right|+c$

Solution:

$$
\begin{aligned}
& \text { Let } I=\int \quad\left(\frac{12 x^{11}+8^{x} \ln \ln 8}{x^{12}+8^{x}}\right) d x \\
& \text { Put } x^{12}+8^{x}=t \\
& \Rightarrow\left(12 x^{11}+8^{x} \ln \ln 8\right) d x=d t \\
& I=\int \quad \frac{d t}{t}=\ln \ln |t|+c \\
& \therefore I=\ln \ln \left|x^{12}+8^{x}\right|+c
\end{aligned}
$$

(iv) The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
A. $e^{x}+e^{-y}=C$
B. $e^{x}+e^{y}=C$
C. $e^{-x}+e^{y}=C$
D. $e^{-x}+e^{-y}=C$

Answer: $(A) e^{x}+e^{-y}=C$

Solution:

Given differential equation, $\frac{d y}{d x}=e^{x} \cdot e^{y}$
Separating variables and integrating,
$\int e^{-y} d y=\int e^{x} d x$
$\Rightarrow-e^{-y}=e^{x}-C$, where $-C$ is constant of integration.
$\therefore e^{x}+e^{-y}=C$
(v) Let A and B be the two events such that $P(A)=0.3$ and $P(A \cup B)=0.8$. If A and B are independent events, then $P(B)$ is
A. $\frac{5}{7}$
B. $\frac{3}{7}$
C. $\frac{1}{2}$
D. $\frac{1}{7}$

Answer: (A) $\frac{5}{7}$

Solution:

For independent events, $P(A \cap B)=P(A) \cdot P(B)$
We know that $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\Rightarrow 0.8=0.3+P(B)-0.3 P(B)$

$$
\therefore P(B)=\frac{5}{7}
$$

(vi) Two persons A and B speak the truth with the probabilities 0.7 and 0.8 respectively.

The probability that they will say the same thing while describing a single event is
A. 0.56
B. 0.62
C. 0.5
D. 0.42

Answer: (B)0.62

Solution:

Let A_{1} be the event that A speaks the truth
and B_{1} be the event that B speaks the truth.
$\Rightarrow P\left(A_{1}\right)=0.7$ and $P\left(B_{1}\right)=0.8$
Probability that they will say same thing while describing a single event
= Both narrate same event truthfully or Both lie about event
$=P\left(A_{1}\right) \cdot P\left(B_{1}\right)+\left(1-P\left(A_{1}\right)\right) \cdot\left(1-P\left(B_{1}\right)\right)$
$=0.7 \times 0.8+(1-0.7)(1-0.8)$
$=0.56+0.06$
$=0.62$

Question 2

(a) The value of $\int(2 x+4 x) d x$ is

Answer: $3 x+\frac{\operatorname{sinsin} 2 x}{2}+c$

Solution:

$\int(2 x+4 x) d x$
$=\int[2(x+x)+2 x] d x$
$=\int[2+(1+\cos \cos 2 x)] d x \quad(\because x+x=1$ and $\cos \cos 2 x=2 x-1)$
$=\int(3+\cos \cos 2 x) d x$
$=3 x+\frac{\operatorname{sinsin} 2 x}{2}+c$
(b) The value of $\int \frac{1}{x^{2}+13 x-2} d x$

Answer: $\frac{1}{\sqrt{177}} \log \log \left|\frac{2 x+13-\sqrt{177}}{2 x+13+\sqrt{177}}\right|+c$

Solution:

Let $I=\int \frac{1}{x^{2}+13 x-2} d x$
Consider $x^{2}+13 x-2=x^{2}+13 x+\frac{169}{4}-\frac{169}{4}-2=\left(x+\frac{13}{2}\right)^{2}-\frac{177}{4}$
$I=\int \frac{1}{\left(x+\frac{13}{2}\right)^{2}-\left(\frac{\sqrt{177}}{2}\right)^{2}} d x$
$=\frac{1}{2\left(\frac{\sqrt{177}}{2}\right)} \log \log \left|\frac{x+\frac{13}{2}-\frac{\sqrt{177}}{2}}{x+\frac{13}{2}+\frac{\sqrt{177}}{2}}\right|+c$
$\therefore I=\frac{1}{\sqrt{177}} \log \log \left|\frac{2 x+13-\sqrt{177}}{2 x+13+\sqrt{177}}\right|+c$

Question 3

(a) The general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2}(x \neq 0)$ is

Answer: $4 x^{2} y=x^{4}+C$

Solution:

Given differential equation, $\frac{d y}{d x}+\frac{2 y}{x}=x$
Comparing it with linear form, $\frac{d y}{d x}+P y=Q$, where P and Q are the functions of x only.
We have, $P=\frac{2}{x}$ and $Q=x$
I.F. $=e^{\int P d x}=e^{\int \frac{2}{x} d x}=e^{2 \ln \ln x}=x^{2}$

Solution of the differential equation is given by
$y(I . F)=.\int Q(I . F)+$.
$\Rightarrow y x^{2}=\int\left(x \cdot x^{2}\right) d x+K$
$\Rightarrow y x^{2}=\frac{x^{4}}{4}+K$
$\therefore 4 x^{2} y=x^{4}+C \quad(C=4 K)$

OR

(b) Find the differential equation which has $y=c_{1} e^{x}+c_{2} e^{-x}$ as the general solution.

Answer: $\frac{d^{2} y}{d x^{2}}-y=0$

Solution:

$y=c_{1} e^{x}+c_{2} e^{-x}$
Differentiating on both sides, we get
$\frac{d y}{d x}=c_{1} e^{x}-c_{2} e^{-x}$
Differentiating on both sides again, we get
$\frac{d^{2} y}{d x^{2}}=c_{1} e^{x}+c_{2} e^{-x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=y \quad$ [From (i)]
$\therefore \frac{d^{2} y}{d x^{2}}-y=0$ is the required differential equation.

Question 4

Evaluate $\int_{\pi / 6}^{\pi / 3} \frac{1}{1+\sqrt{\cot \cot x}} d x$

Answer: $\frac{\pi}{12}$

Solution:

Let $I=\int_{\pi / 6}^{\pi / 3} \frac{1}{1+\sqrt{\cot \cot x}} d x$
$\Rightarrow I=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\operatorname{sinsin} x}}{\sqrt{\operatorname{sinsin} x}+\sqrt{\operatorname{coscos} x}} d x \cdots(i)$
We know that $\int_{a}^{b} \quad f(x) d x=\int_{a}^{b} \quad f(a+b-x) d x$

$$
\begin{aligned}
\therefore I & =\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\sin \sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\operatorname{sinsin}\left(\frac{\pi}{2}-x\right)}+\sqrt{\operatorname{coscos}\left(\frac{\pi}{2}-x\right)}} d x \\
& =\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\cos \cos x}}{\sqrt{\operatorname{sinsin} x}+\sqrt{\cos \cos x}} d x \quad \cdots(i i)
\end{aligned}
$$

Adding (i) and (ii), we get
$2 I=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\operatorname{sinsin} x}+\sqrt{\operatorname{coscos} x}}{\sqrt{\operatorname{sinsin} x}+\sqrt{\cos \cos x}} d x$
$\Rightarrow 2 I=\int_{\pi / 6}^{\pi / 3} 1 d x$
$\Rightarrow 2 I=\frac{\pi}{3}-\frac{\pi}{6}$
$\therefore I=\frac{\pi}{12}$

Question 5

(a) The probability distribution of X is as follows:

x	0	1	2	3	4
$P(X=x)$	0.1	k	$2 k$	$2 k$	k

Then the value of $P(X \geq 3)$ is
Answer: $\frac{9}{20}$

Solution:

We know that $\sum \quad P(X=x)=1$
$\Rightarrow P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4)=1$
$\Rightarrow 0.1++k+2 k+2 k+k=1$
$\Rightarrow k=\frac{3}{20}$
$P(X \geq 3)=P(x=3)+P(x=4)$
$\Rightarrow P(X \geq 3)=2\left(\frac{3}{20}\right)+\frac{3}{20}$
$\therefore P(X \geq 3)=\frac{9}{20}$

OR

(b) The probability of getting 3 exactly twice in 5 throws of a fair die is

Answer: $\frac{1}{3}\left(\frac{5}{6}\right)^{4}$

Solution:

The repeated tossing of a die forms a binomial distribution.
Let X represent the number of times of getting 3 in 5 throws of the die.
Probability of getting 3 in a single throw of a die, $p=\frac{1}{6}$
Probability of not getting $3, q=1-\frac{1}{6}=\frac{5}{6}$
We have to find probability of getting 3 exactly twice in 5 throws of a die.
Using Binomial distribution,
$P(X=2)=5 C_{2} \cdot p^{2} \cdot q^{5-2}$

$$
\begin{aligned}
& =5 C_{2} \cdot\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{3} \\
& =\frac{5 \times 4}{2 \times 1} \times\left(\frac{1}{6}\right)^{2} \times\left(\frac{5}{6}\right)^{3} \\
\therefore P(X=2) & =\frac{1}{3}\left(\frac{5}{6}\right)^{4}
\end{aligned}
$$

Question 6

The value of $\int \frac{1}{(2 x+3)(x-4)} d x$
Answer: $\ln \ln \left|\frac{x-4}{2 x+3}\right|^{\frac{1}{11}}+C$

Solution:

$$
\begin{aligned}
& \text { Let } I=\int \frac{1}{(2 x+3)(x-4)} d x \\
& \text { Consider } \frac{1}{(2 x+3)(x-4)}=\frac{A}{2 x+3}+\frac{B}{x-4} \\
& \Rightarrow 1=A(x-4)+B(2 x+3) \\
& \text { For } x=4,1=B(2(4)+3) \Rightarrow B=\frac{1}{11} \\
& \text { For } x=-\frac{3}{2}, 1=A\left(-\frac{3}{2}-4\right) \Rightarrow A=-\frac{2}{11} \\
& \therefore I=\frac{1}{11} \int \quad\left(\frac{-2}{2 x+3}+\frac{1}{x-4}\right) d x \\
& =\frac{1}{11}[\ln \ln |x-4|-\ln \ln |2 x+3|]+C \\
& =\frac{1}{11} \ln \ln \left|\frac{x-4}{2 x+3}\right|+C \text {, where } C \text { is the constant of integration. }
\end{aligned}
$$

Question 7

Every morning, Mr. Ramesh either reads a book or watches T.V. The probability that he watches T.V. is $\frac{4}{5}$. If he watches T.V., there is a probability of $\frac{3}{4}$ that he falls asleep. If he reads a book, the probability that he falls asleep is $\frac{1}{4}$. On one evening, Mr. Ramesh is found to be asleep. The probability that he watched T.V., is

Answer: $\frac{12}{13}$

Solution:

Probability that Ramesh watches T.V., $P(A)=\frac{4}{5}$.
Probability that Ramesh reads book, $P(B)=1-\frac{4}{5}=\frac{1}{5}$
Let S be the event that Ramesh is asleep.
Probability that Ramesh falls asleep while watching T.V. is $P(S \mid A)=\frac{3}{4}$
Probability that Ramesh falls asleep while reading book is $P(S \mid B)=\frac{1}{4}$
By Bayes' theorem,

$$
P(A \mid S)=\frac{P(A) \cdot P(S \mid A)}{P(A) \cdot P(S \mid A)+P(B) \cdot P(\underline{S \mid B})}=\frac{\frac{4}{5} \times \frac{3}{4}}{\frac{4}{5} \times \frac{5}{4}+\frac{1}{5} \times \frac{1}{4}}=\frac{12}{\underline{1}}
$$

Question 8

(a) Evaluate $\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x$

Answer: $e^{x}\left(\frac{x-1}{x+1}\right)+C$

Solution:

$$
\begin{gathered}
\text { Let } I=\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x \\
\Rightarrow I=\int \frac{e^{x}\left(x^{2}-1+1+1\right)}{(x+1)^{2}} d x \\
\Rightarrow I=\int e^{x}\left[\frac{x^{2}-1}{(x+1)^{2}}+\frac{2}{(x+1)^{2}}\right] d x \\
\Rightarrow I=\int e^{x}\left[\frac{x-1}{x+1}+\frac{2}{(x+1)^{2}}\right] d x
\end{gathered}
$$

Consider $f(x)=\frac{x-1}{x+1}$, then $f^{\prime}(x)=\frac{2}{(x+1)^{2}}$
Thus, the given integral is of the form $e^{x}\left[f(x)+f^{\prime}(x)\right]$.
Therefore, $I=\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x=e^{x}\left(\frac{x-1}{x+1}\right)+C$
(b) Evaluate $\left.\int_{0}^{\pi / 2} \log \log x\right) d x$

Answer: $-\frac{\pi}{2} \log \log 2$

Solution:

Let $\left.I=\int_{0}^{\frac{\pi}{2}} \log \log x\right) d x$
We know that $\int_{a}^{b} f(x)=\int_{a}^{b} \quad f(a+b-x)$

$$
\begin{align*}
& \therefore I=\int_{0}^{\frac{\pi}{2}} \log \log \left(\frac{\pi}{2}-x\right) d x \\
\Rightarrow I= & \int_{0}^{\frac{\pi}{2}} \log \log (\cos \cos x) d x \tag{2}
\end{align*}
$$

Adding the equations (1) and (2), we get

$$
\begin{gathered}
2 I=\int_{0}^{\frac{\pi}{2}}[\log \log (\sin \sin x)+\log \log (\cos \cos x)] d x \\
\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \quad[\log \log (\sin \sin x \cos \cos x)+\log \log 2- \\
\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \quad[\log \log 2] d x(\text { By adding and subtracting } \log \log 2) \\
\log (\sin \sin 2 x)-\log \log 2] d x \quad(\because \sin \sin 2 x=2 \sin \sin x \cos \cos x) \\
\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \log \log \sin \sin 2 x d x-\int_{0}^{\frac{\pi}{2}} \log \log 2 d x
\end{gathered}
$$

Put $2 x=t$ in the first integral. Then, $2 d x=d t$

Lower limit: when $x=0, t=\underline{0}$ and Upper limit: when $x=\frac{\pi}{2}, t=\pi$

$$
\begin{gathered}
\bar{\therefore} 2 I=\frac{\overline{1}}{2} \int_{0}^{\pi} \overline{\bar{l}} \overline{\log } \log \sin \sin t d t-\int_{0}^{\frac{\pi}{2}} \log \log 2 d x \\
\Rightarrow 2 I=\frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \log \sin \sin t d t-\frac{\pi}{2} \log \log 2(\because \sin \sin (\pi-x)=\sin \sin x) \\
\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \log \log \sin \sin x d x-\frac{\pi}{2} \log \log 2(\text { By changing variable } t \text { to } x) \\
\Rightarrow 2 I=I-\frac{\pi}{2} \log \log 2 \\
\therefore I=-\frac{\pi}{2} \log \log 2
\end{gathered}
$$

SECTION B - 8 MARKS

Question 9

(i) The equation of plane passing through $A(1,2,3)$ and having $3,2,5$ as the direction ratios of the normal to the plane, is
A. $3 x+2 y-6 z=9$
B. $3 x+2 y+5 z=22$
C. $3 x+4 y-5 z=18$
D. $3 x-2 y+5 z=22$

Answer: $(B) 3 x+2 y+5 z=22$

Solution:

Equation of plane passing through (x_{1}, y_{1}, z_{1}) and having direction ratios of normal a, b, c is given by $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$.
\therefore Required equation of plane is $3(x-1)+2(y-2)+5(z-3)=0$ or, $3 x+2 y+5 z=22$
(ii) Find the acute angle between the planes $\vec{r} \cdot(\hat{\imath}+\hat{\jmath}-2 \hat{k})=8$ and $\vec{r} \cdot(-2 \hat{\imath}+\hat{\jmath}+\hat{k})=3$.
A. $\frac{\pi}{6}$
B. 0
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$

Answer: (D) $\frac{\pi}{3}$

Solution:

Normal vector of given planes are $\overrightarrow{n_{1}}=\hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\overrightarrow{n_{2}}=-2 \hat{\imath}+\hat{\jmath}+\hat{k}$.
Angle between the planes is, $\cos \cos \theta=\left|\frac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|}\right|$
$\Rightarrow \cos \cos \theta=\left|\frac{1(-2)+1(1)+(-2)(1)}{\sqrt{1^{2}+1^{2}+(-2)^{2}} \sqrt{(-2)^{2}+1^{2}+1^{2}}}\right|$
$\Rightarrow \cos \cos \theta=\left|-\frac{3}{6}\right|=\frac{1}{2}$
$\therefore \theta=\frac{\pi}{3}$

Question 10

If lines $O A, O B$ are drawn from O with direction cosines proportional to $(1,-2,-1)$ and $(3,-2,3)$, then the direction cosines of the normal to the plane $A O B$ is

Answer: $\left(-\frac{4}{\sqrt{29}},-\frac{3}{\sqrt{29}}, \frac{2}{\sqrt{29}}\right)$

Solution:

$$
\begin{aligned}
& \overrightarrow{O A}=\hat{\imath}-2 \hat{\jmath}-\hat{k} \\
& \overrightarrow{O B}=3 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}
\end{aligned}
$$

DRs of normal to the plane $A O B$ is.
$\overrightarrow{O A} \times \overrightarrow{O B}=|\hat{\imath} \hat{\jmath} \hat{k} 1-2-13-23|=\hat{\imath}(-6-2)-\hat{\jmath}(3+3)+\hat{k}(-2+6)$
$=-8 \hat{\imath}-6 \hat{\jmath}+4 \hat{k}$
So, d.r.'s of normal is $(-4,-3,2)$
Hence, d.c.'s of normal is $\left(-\frac{4}{\sqrt{29}},-\frac{3}{\sqrt{29}}, \frac{2}{\sqrt{29}}\right)$

Question 11

The area of the region bounded by $x^{2}=16 y, y=1, y=4$ and $x=0$ in the first quadrant is
Answer: $\frac{56}{3}$ sq. units

Solution:

$$
\begin{aligned}
\text { Area } & =\int_{1}^{4} \quad 4 \sqrt{y} d y \\
& =4\left[\frac{\left(y^{3 / 2}\right)}{3 / 2}\right]_{1}^{4} \\
& =\frac{8}{3}[8-1]
\end{aligned}
$$

\therefore Area $=\frac{56}{3}$ sq. units

Question 12

(i) The two lines of regression are $x+2 y-5=0$ and $2 x+3 y-8=0$ and variance of x is 12 . Find the variance of y.
A. 2
B. 1
C. 2.5
D. 1.5

Answer: (A) 2

Solution:

If possible, suppose that regression line, x on y is $2 x+3 y-8=0$ and y on x, is $x+2 y-5=0$
$\therefore b_{x y}=-\frac{3}{2}$ and $b_{y x}=-\frac{1}{2}$
Since $r^{2}=b_{x y} \cdot b_{y x}=-\frac{3}{2} \times-\frac{1}{2}=\frac{3}{4}<1$
\therefore Our assumption is right.
\therefore Coefficient of correlation, $r=-\frac{\sqrt{3}}{2}$
We know that $b_{y x}=r \cdot \frac{\sigma_{y}}{\sigma_{x}}=-\frac{\sqrt{3}}{2} \times \frac{\sigma_{y}}{\sqrt{12}}$
$\Rightarrow-\frac{1}{2}=-\frac{\sqrt{3}}{2} \times \frac{\sigma_{y}}{\sqrt{12}}$
$\therefore \sigma_{y}=2$
(ii) Let the regression line of x on y be, $m x-y+10=0$ and y on x be, $-2 x+5 y+14=0$.

If the coefficient of correlation between x and y is $\frac{1}{\sqrt{10}}$, then the value of m is
A. 6
B. 4
C. 2
D. 8

Answer: (B) 4

Solution:

Given, regression line of x on y : $m x-y+10=0$
$\Rightarrow m x=y-10$
$\Rightarrow x=\frac{y}{m}-\frac{10}{m}$
Comparing with $x=\left(b_{x y}\right) y+c$, we get
$b_{x y}=\frac{1}{m}$
Similarly, $b_{y x}=\frac{2}{5}$
We know that $r^{2}=b_{x y} \times b_{y x}=\frac{1}{10}$
$\Rightarrow \frac{2}{5 m}=\frac{1}{10}$
$\therefore m=4$

Question 13
Find the value of $b_{y x}-b_{x y}$ for the following observations: $(3,6),(4,5),(5,4),(6,3),(7,2)$
Answer: 0
Solution:

x	y	x^{2}	y^{2}	$x y$
3	6	9	36	18
4	5	16	25	20
5	4	25	16	20
6	3	36	9	18
7	2	49	4	14
$\sum x=25$	$\sum y=20$	$\sum x^{2}=135$	$\sum y^{2}=90$	$x y=90$

We know that $b_{x y}=\frac{\Sigma x y-\frac{\Sigma x \Sigma \quad y}{n}}{\Sigma y^{2}-\frac{(\Sigma y)^{2}}{n}}$
$\Rightarrow b_{x y}=\frac{90-\frac{25 \times 20}{5}}{90-\frac{400}{5}}=\frac{90-100}{90-80}=-1$
$\therefore b_{x y}=-1$
Also, $b_{y x}=\frac{\sum x y-\frac{\Sigma x \cdot \Sigma \quad y}{n}}{\sum \quad x^{2}-\frac{(\Sigma x)^{2}}{n}}$
$\Rightarrow b_{y x}=\frac{90-\frac{25 \times 20}{5}}{135-\frac{625}{5}}=\frac{90-100}{135-125}=-1$
$\therefore b_{y x}=-1$
Hence, the value of $b_{y x}-b_{x y}$ is 0 .

Question 14

A company produces two types of items P and Q. Manufacturing of both items requires the metals gold and copper. Each unit of item P requires 3 grams of gold and 1 gram of copper while that of item Q requires 1 gram of gold and 2 grams of copper. The company has 9 grams of gold and 8 grams of copper in its store. If each unit of item P makes a profit of $₹ 50$ and each unit of item Q makes a profit of ₹ 60 then determine the number of units of each item that the company should produce to maximise profit. What is the maximum profit?

Answer: 280

Solution:

Let the number of units item A to be produced be x and that of B to be produced be y. Let z be the total profit in rupees.
The given data can be put in tabular form as:

Items		Gold	Copper	Profit per unit(₹)
P	x	3	1	50
Q	y	1	2	60
Availability		9	8	

Thus, mathēmatical formulation of given LPP_ is
Maximize $z=50 x+60 y$
Subject to constraints $3 x+y \leq 9$
$x+2 y \leq 8$
$x, y \geq 0$

The shaded region $O A B C$ is the feasible region.
The corner points are $O(0,0), A(3,0), B(2,3), C(0,4)$.
At $O(0,0), z=0$
At $A(3,0), z=50 \times 3+60 \times 0=150$
At $B(2,3), z=50 \times 2+60 \times 3=280$
At $C(0,4), z=50 \times 0+60 \times 4=240$
$\therefore z$ is maximum at $x=2$ and $y=3$.
\therefore For maximum profit, company should produce 2 units of item P and 3 units of item Q.
Hence, maximum profit is ₹ 280 .

