Mock Board Exam

STD: XII Maximum marks : 35 SUBJECT: Physics 21/3/2022 11:00 - 21/3/2022 22:30 ASSESSMENT: Mock Test Time Limit : 150 Minutes

All questions are compulsory.

This question paper is divided in 3 Sections A, B and C.

The intended marks for questions are given in brackets.

Answers to sub parts of the same question must be given in one place only.

A simple scientific calculator without a programmable memory may be used for calculations.

A students has to answer a question either by typing it out, in the space provided, or writing down each answer on paper, and uploading a picture of it using the upload option.

A student is advised to write the answers in a clear, legible handwriting using a blue/black ball point pen before uploading it.

	Section A	7 Marks 7 Marks
1	Plane and convex mirrors produce virtual images of objects. Can they produce real images under some circumstances? Explain	1 M
2	What is the value of angular momentum of an electron in the second orbit of Bohr's model of hydrogen atom?	s 1M
3	Write any three advantages of Newtonian Telescope.	1 M
4	In fission process, nucleus X divides into two nuclei Y and Z , their binding energiate being E_X , E_Y and E_Z respectively. Then	es 1M
	(A) $E_Y + E_Z = E_X$ (B) $E_Y + E_Z > E_X$	
	$\textcircled{C} E_Y + E_Z < E_X \qquad \qquad \textcircled{D} E_Y E_Z = E_X$	
5	Magnifying power of a simple microscope is (when final image is formed at $D=25\ cm$ from eye)	1 M
	(A) $\frac{D}{f}$ (B) $1 + \frac{D}{f}$	
	$\bigcirc 1 + \frac{f}{D} \qquad (\bigcirc 1 - \frac{D}{f})$	

6 For a person, the distance of the eye lens from the retina is 2 cm and maximum focal **1 M** length of the eye lens is 1.96 cm. Find the far point of the person.

 \bigcirc 78 cm

7 In which of the following processes, the number of protons in the nucleus increase **1 M**

$igl({f A}) lpha - decay$	(\mathbb{B}) eta $^ decay$	$\bigcirc eta^+ - decay$
(D) $K - capture$		

Section E	3
-----------	---

•	U	IVIAI KS
1	n	Marks

- 8 An electron with de-Broglie wavelength λ falls on the target in an X-rays tube. Find **2 M** the cut-off wavelength λ_0 of the X-rays.
- 9a. Why are cadmium and boron rods used in a nuclear reactor?2 Mb. Explain the function of moderators in a nuclear reactor.
- 10 In Bohr's model of hydrogen atom, the ratio of periods of revolution of an electron in 2 Mn = 1 to n = 2 is
- 11 Draw a ray diagram of a reflecting type telescope. State, its magnifying power. 2 M
- 12 In Young's double slit experiment, the width of fringes obtained with a light of **2 M** wavelength 6000 Å is 2 mm. What will be the fringe width if the entire apparatus is immersed in a liquid of refractive index $\frac{4}{3}$?
 - Section C

18 Marks 18 Marks

13 i) Identify the logic gates marked P and Q. Also in the figure, write down the truth table for the circuit. **3 M**

S

ii) What do you mean by universal gates?

14 (i) A thin mica sheet of thickness $2 \times 10^{-6} m$ and refractive index $\mu = 1.5$ is **3** M introduced in the path of the first wave. The wavelength of the wave used is 5000 Å. The central bright maximum will shift.

(ii) A plate thickness t made of a material of refractive index μ is placed in front of one of the slits in a double slit experiment. What should be the maximum thickness t which will make the intensity at the centre of the fringe pattern zero?

15	(i) Explain the forbidden energy gap of an element. (ii) With label diagram show the different forbidden energy gaps for conductor, Semiconductor and Insulator.	3 M
16	Prove Snell's law for refraction using Huygens Principle.	3 M
17	Derive the expression for magnifying power of a compound microscope with image at D .	3 M
18	Calculate the longest and shortest wavelength in the Balmer series of Hydrogen atom.	3 M