Mock Board Exam

STD: XII
Maximum marks : 35

SUBJECT: Physics
21/3/2022 11:00-21/3/2022

ASSESSMENT: Mock Test
Time Limit : 150 Minutes

All questions are compulsory.
This question paper is divided in 3 Sections A, B and C.
The intended marks for questions are given in brackets.
Answers to sub parts of the same question must be given in one place only.
A simple scientific calculator without a programmable memory may be used for calculations.
A students has to answer a question either by typing it out, in the space provided, or writing down each answer on paper, and uploading a picture of it using the upload option.
A student is advised to write the answers in a clear, legible handwriting using a blue/black ball point pen before uploading it.

Section A

7 Marks
7 Marks

1 Plane and convex mirrors produce virtual images of objects. Can they produce real 1 M images under some circumstances? Explain

2 What is the value of angular momentum of an electron in the second orbit of Bohr's $\mathbf{1 M}$ model of hydrogen atom?

3 Write any three advantages of Newtonian Telescope.

4 In fission process, nucleus X divides into two nuclei Y and Z, their binding energies being E_{X}, E_{Y} and E_{Z} respectively. Then
(A) $E_{Y}+E_{Z}=E_{X}$
(B) $E_{Y}+E_{Z}>E_{X}$
(C) $E_{Y}+E_{Z}<E_{X}$
(D) $E_{Y} E_{Z}=E_{X}$

5 Magnifying power of a simple microscope is (when final image is formed at $D=25 \mathrm{~cm}$ from eye)
(A) $\frac{D}{f}$
(B) $1+\frac{D}{f}$
(C) $1+\frac{f}{D}$
(D) $1-\frac{D}{f}$

6 For a person, the distance of the eye lens from the retina is 2 cm and maximum focal length of the eye lens is 1.96 cm . Find the far point of the person.
(A) 88 cm
(B) 98 cm
(C) 78 cm
(D) 68 cm

7 In which of the following processes, the number of protons in the nucleus increase
(A) $\alpha-$ decay
(B) $\beta^{-}-$decay
(C) $\beta^{+}-$decay
(D) K - capture

Section B

10 Marks
10 Marks

8 An electron with de-Broglie wavelength λ falls on the target in an X-rays tube. Find the cut-off wavelength λ_{0} of the X-rays.

9 a. Why are cadmium and boron rods used in a nuclear reactor?
b. Explain the function of moderators in a nuclear reactor.

10 In Bohr's model of hydrogen atom, the ratio of periods of revolution of an electron in $n=1$ to $n=2$ is

11 Draw a ray diagram of a reflecting type telescope. State, its magnifying power.

12 In Young's double slit experiment, the width of fringes obtained with a light of wavelength $6000 \AA$ is 2 mm . What will be the fringe width if the entire apparatus is immersed in a liquid of refractive index $\frac{4}{3}$?

Section C

18 Marks
18 Marks

13 i) Identify the logic gates marked P and Q. Also in the figure, write down the truth 3 M table for the circuit.

S

ii) What do you mean by universal gates?

14 (i) A thin mica sheet of thickness $2 \times 10^{-6} m$ and refractive index $\mu=1.5$ is introduced in the path of the first wave. The wavelength of the wave used is $5000 \AA$. The central bright maximum will shift.
(ii) A plate thickness t made of a material of refractive index μ is placed in front of one of the slits in a double slit experiment. What should be the maximum thickness t which will make the intensity at the centre of the fringe pattern zero?
15 (i) Explain the forbidden energy gap of an element. 3 M(ii) With label diagram show the different forbidden energy gaps for conductor,Semiconductor and Insulator.
16 Prove Snell's law for refraction using Huygens Principle. 3 M
17 Derive the expression for magnifying power of a compound microscope with image 3 M
at D.
18 Calculate the longest and shortest wavelength in the Balmer series of Hydrogen 3 M atom.

