

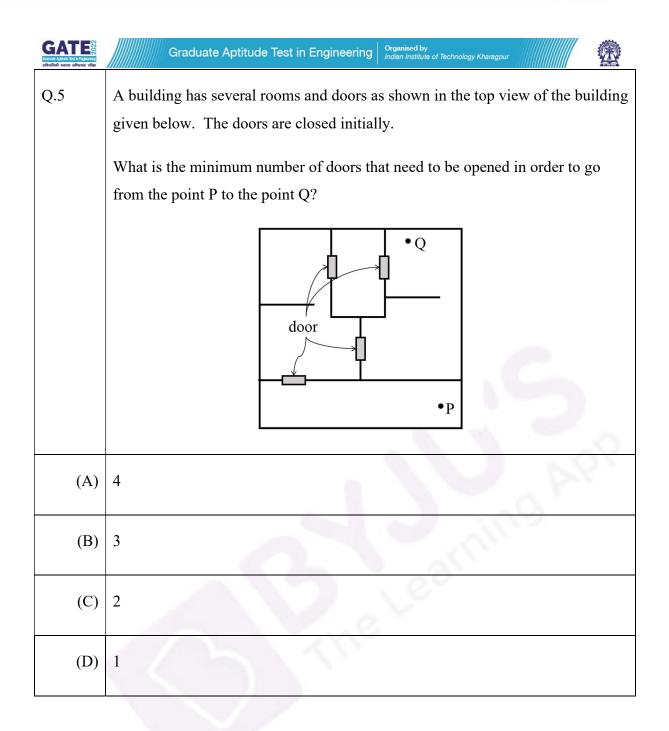
GATE 2022 General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark each.

Q.1	Inhaling the smoke from a burning could you quickly.
(A)	tire / tier
(B)	tire / tyre
(C)	tyre / tire
(D)	tyre / tier

Q.2	A sphere of radius r cm is packed in a box of cubical shape. What should be the minimum volume (in cm ³) of the box that can enclose the sphere?
(A)	$\frac{r^3}{8}$
(B)	r^3
(C)	2 <i>r</i> ³
(D)	8r ³

GATE हातदान्तर देखेता स्टान स्टानस्टान कपिपरिको प्लातक अभिवाशा परिवा	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.3	Pipes P and Q can fill a storage tank in full with water in 10 and 6 minutes, respectively. Pipe R draws the water out from the storage tank at a rate of 34 litres per minute. P, Q and R operate at a constant rate.If it takes one hour to completely empty a full storage tank with all the pipes operating simultaneously, what is the capacity of the storage tank (in litres)?
(A)	26.8
(B)	60.0
(C)	120.0
(D)	127.5



Γ

Q.4	Six persons P, Q, R, S, T and U are sitting around a circular table facing the center not necessarily in the same order. Consider the following statements:
	 P sits next to S and T. Q sits diametrically opposite to P. The shortest distance between S and R is equal to the shortest distance between T and U. Based on the above statements, Q is a neighbor of
(A)	U and S
(B)	R and T
(C)	R and U
(D)	P and S

Ī,

逊

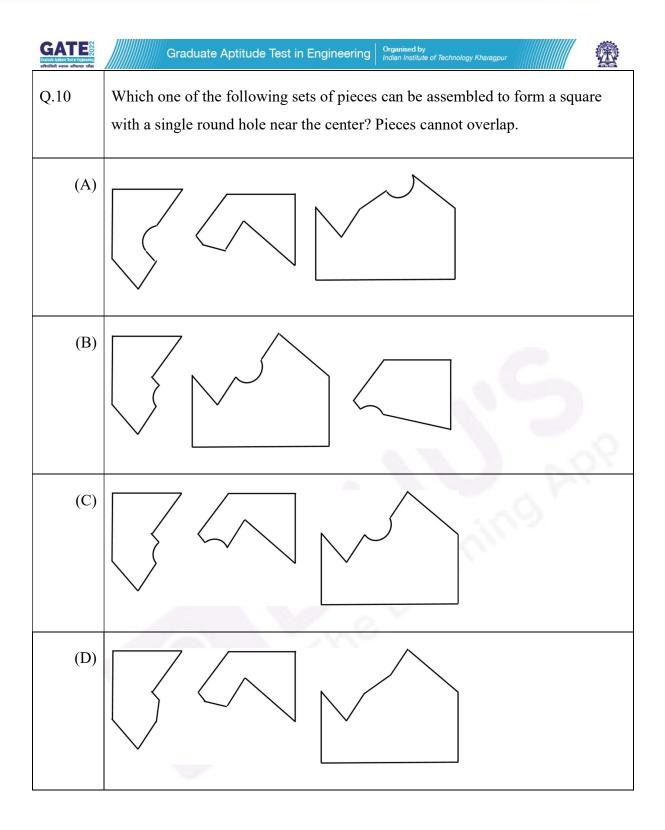
Γ

٦

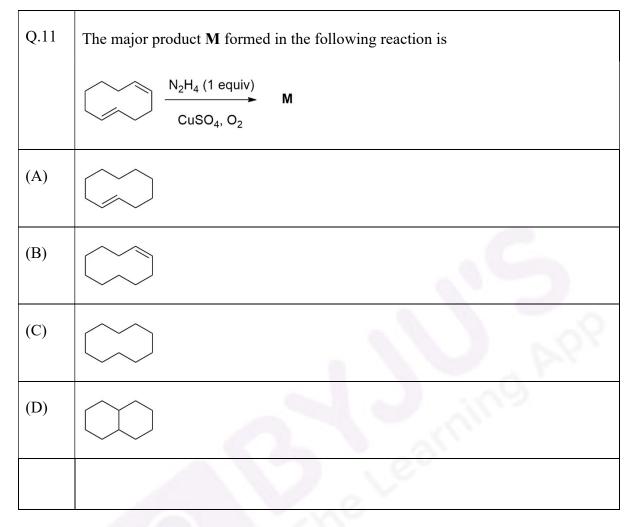
Q. 6 – Q. 10 Carry TWO marks each.

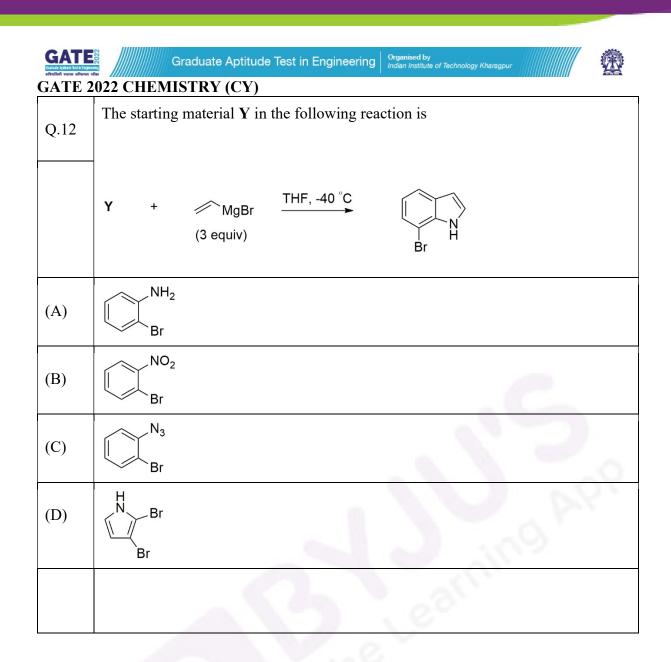
Q.6	Rice, a versatile and inexpensive source of carbohydrate, is a critical component of diet worldwide. Climate change, causing extreme weather, poses a threat to sustained availability of rice. Scientists are working on developing Green Super Rice (GSR), which is resilient under extreme weather conditions yet gives higher yields sustainably. Which one of the following is the CORRECT logical inference based on the information given in the above passage?
(A)	GSR is an alternative to regular rice, but it grows only in an extreme weather
(B)	GSR may be used in future in response to adverse effects of climate change
(C)	GSR grows in an extreme weather, but the quantity of produce is lesser than regular rice
(D)	Regular rice will continue to provide good yields even in extreme weather

A game consists of spinning an arrow around a stationary disk as shown below. Q.7 When the arrow comes to rest, there are eight equally likely outcomes. It could come to rest in any one of the sectors numbered 1, 2, 3, 4, 5, 6, 7 or 8 as shown. Two such disks are used in a game where their arrows are independently spun. What is the probability that the sum of the numbers on the resulting sectors upon spinning the two disks is equal to 8 after the arrows come to rest? 1 1 8 8 7 7 2 2 6 3 6 3 4 5 5 4 1 16 (A) (B) 5 64 3 32 (C) $\frac{7}{64}$ (D)

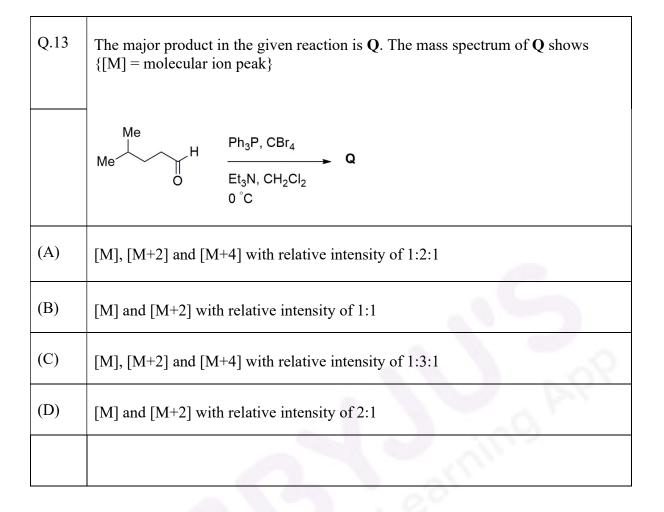


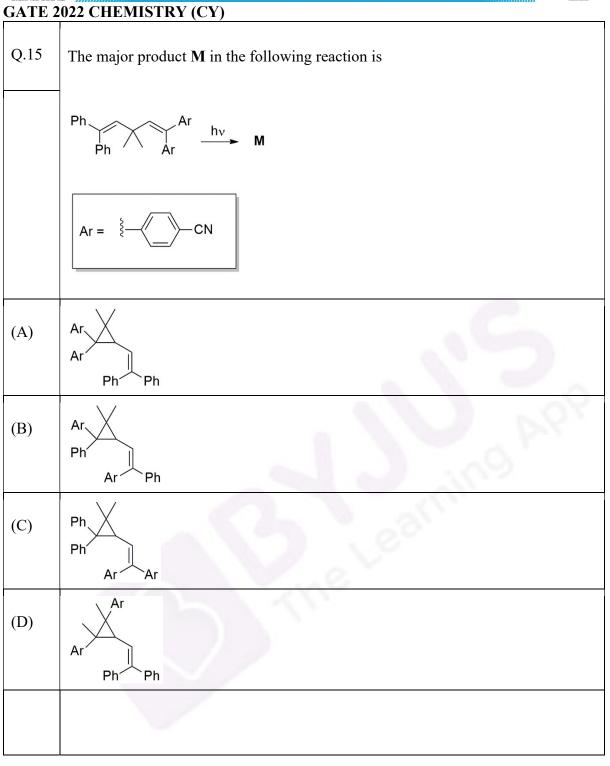
Q.8	Consider the following inequalities.
	(i) $3p - q < 4$
	(ii) $3q - p < 12$
	Which one of the following expressions below satisfies the above two inequalities?
(A)	p+q < 8
(B)	p + q = 8
(C)	$8 \le p + q < 16$
(D)	$p + q \ge 16$


Q.9	Given below are three statements and four conclusions drawn based on the statements.
	Statement 1: Some engineers are writers.
	Statement 2: No writer is an actor.
	Statement 3: All actors are engineers.
	Conclusion I: Some writers are engineers.
	Conclusion II: All engineers are actors.
	Conclusion III: No actor is a writer.
	Conclusion IV: Some actors are writers.
	Which one of the following options can be logically inferred?
(A)	Only conclusion I is correct
(B)	Only conclusion II and conclusion III are correct
(C)	Only conclusion I and conclusion III are correct
(D)	Either conclusion III or conclusion IV is correct

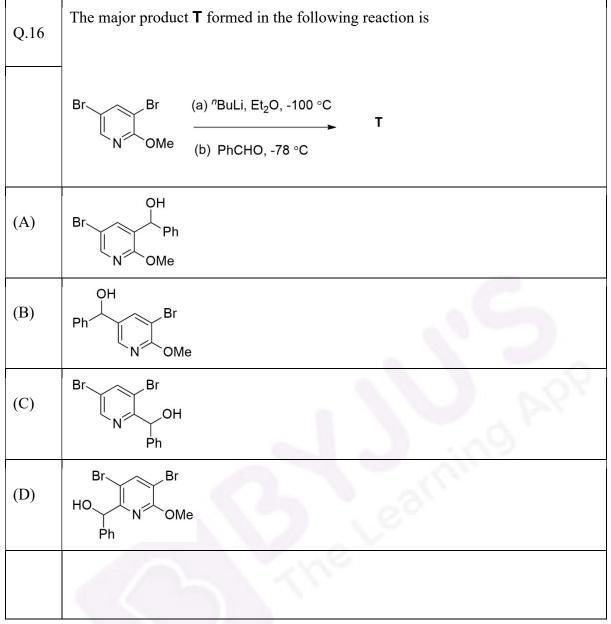


Q.11 – Q.35 Carry ONE mark Each





	$= \underbrace{Ph_{N}}_{O} \underbrace{NH}_{O} = \underbrace{Ph_{N}}_{O} \underbrace{NH}_{O} = HO_{2}C \underbrace{NH_{2}}_{O}$
(A) gly	o o o Ph ∕
(A) gly	
	ycine-phenylalanine-valine
(B) val	lline-phenylalanine-glycine
(C) gly	ycine-tyrosine-valine
(D) gly	ycine-phenylalanine-alanine



٦

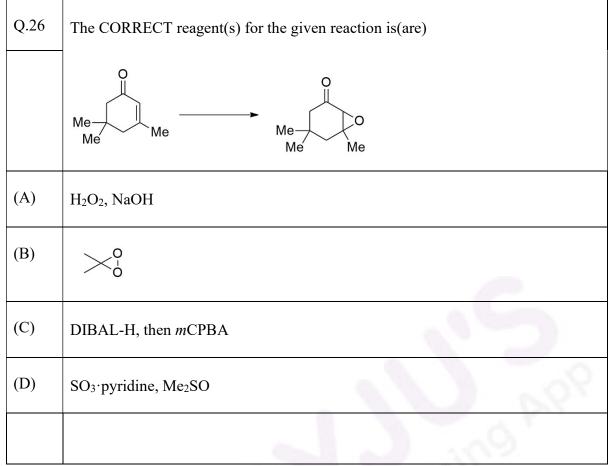
Q.17	In differential thermal analysis (DTA)
(A)	the temperature differences between the sample and reference are measured as a function of temperature
(B)	the differences in heat flow into the reference and sample are measured as a function of temperature
(C)	the change in the mass of the sample is measured as a function of temperature
(D)	the glass transition is observed as a sharp peak
Q.18	The v_{0-0} resonance Raman stretching frequency (cm ⁻¹) of the coordinated dioxygen in <i>oxy-hemoglobin</i> and <i>oxy-hemocyanin</i> appears, respectively, nearly at
(A)	1136 and 744
(B)	1550 and 744
(C)	744 and 1136
(D)	744 and 1550

Q.19	The number of metal-metal bond(s), with σ , π , and δ character, present in [Mo ₂ (CH ₃ CO ₂) ₄] complex is(are), respectively,
(A)	1, 2, 1
(B)	1, 2, 0
(C)	1, 1, 0
(D)	1, 1, 1

Page **17**

GATE 2	2022 CHEMISTRY (CY)
Q.20	$1s_A$ and $1s_B$ are the normalized eigenfunctions of two hydrogen atoms H _A and H _B , respectively. If $S = \langle 1s_A 1s_B \rangle$, the option that is ALWAYS CORRECT is
(A)	<i>S</i> = 1
(B)	S = 0
(C)	S = imaginary constant
(D)	$0 \le S \le 1$
Q. 21	The pure vibrational spectrum of a hypothetical diatomic molecule shows three peaks with the following intensity at three different temperatures. $Peak$ Intensity (arbitrary unit) 300 K600 K900 K11.01.01.0II0.10.11.1III0.020.040.06
(A)	Peak I appears at the lowest energy
(B)	Peak II appears at the lowest energy
(C)	Peak III appears at the lowest energy
(D)	Peak I appears at the highest energy

GATE 2	2022 CHEMISTRY (CY)
Q.22	The point group of SF ₆ is
(A)	D_{6h}
(B)	O_h
(C)	D_{6d}
(D)	$C_{6\nu}$
Q. 23	A point originally at $(1,3,5)$ was subjected to a symmetry operation (\hat{O}_1) that shifted the point to $(-1, -3, 5)$. Subsequently, the point at $(-1, -3, 5)$ was subjected to another symmetry operation (\hat{O}_2) that shifted this point to $(-1, -3, -5)$. The symmetry operators \hat{O}_1 and \hat{O}_2 are, respectively,
(A)	$\hat{C}_2(x)$ and $\hat{\sigma}(xy)$
(B)	$\hat{C}_2(z)$ and $\hat{\sigma}(xy)$
(C)	$\hat{\sigma}(xy)$ and $\hat{\mathcal{C}}_2(z)$
(D)	\hat{S}_1 and \hat{S}_2


Т

Г

Q. 24	Adsorption of a gas with pressure P on a solid obeys the Langmuir adsorption isotherm. For a fixed fractional coverage, the correct relation between K and P at a fixed temperature is
	$[K = k_a/k_b, k_a \text{ and } k_b are the rate constants for adsorption and desorption, respectively. Assume non-dissociative adsorption.]$
(A)	$K \propto \mathrm{P}^{-1/2}$
(B)	$K \propto P$
(C)	$K \propto P^{-1}$
(D)	$K \propto P^{1/2}$
Q. 25	The temperature dependence of the rate constant for a second-order chemical reaction obeys the Arrhenius equation. The SI unit of the 'pre-exponential factor' is
(A)	s ⁻¹
(B)	$m^{3} mol^{-1} s^{-1}$
(C)	mol m ⁻³ s ⁻¹
(D)	$(m^3 mol^{-1})^2 s^{-1}$

GATE 2	022 CHEMISTRY (CY)
Q.27	The CORRECT statement(s) about the ¹ H NMR spectra of compounds P and Q is(are)
	$Me H_a Me Me H_a Me H_a Me H_a Me H_a Me H_a Me $
	H _b ST Ph H _b ST Ph P Q
(A)	P shows a sharp singlet at $\delta = 3.70$ ppm (for H _a and H _b)
(B)	Q shows a sharp singlet at $\delta = 3.70$ ppm (for H _a and H _b)
(C)	P shows a AB-quartet centered at $\delta = 3.63$ ppm (for H _a and H _b)
(D)	Q shows a AB-quartet centered at $\delta = 3.63$ ppm (for H _a and H _b)
Q.28	The CORRECT statement(s) about thallium halides is(are)
(A)	TIF is highly soluble in water whereas other Tl-halides are sparingly soluble
(B)	TIF adopts a distorted NaCl structure
(C)	TlI ₃ is isomorphic with CsI ₃ and the oxidation state of Tl is $+3$
(D)	Both TlBr and TlCl have CsCl structure

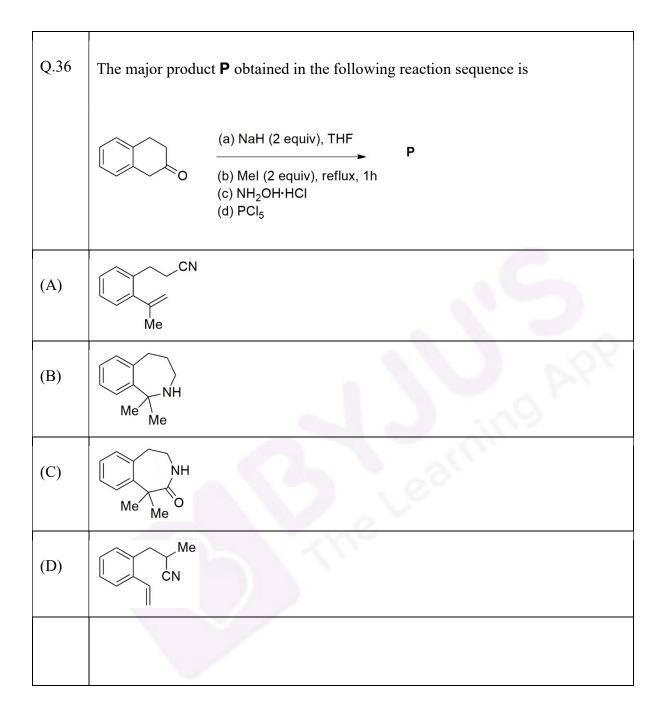
Q.29	The CORRECT statement(s) about the spectral line broadening in atomic spectra is(are)
(A)	The collision between atoms causes broadening of the spectral line
(B)	Shorter the lifetime of the excited state, the broader is the line width
(C)	Doppler broadening is more pronounced as the flame temperature increases
(D)	In flame and plasma, the natural line broadening exceeds the collisional line broadening

Τ

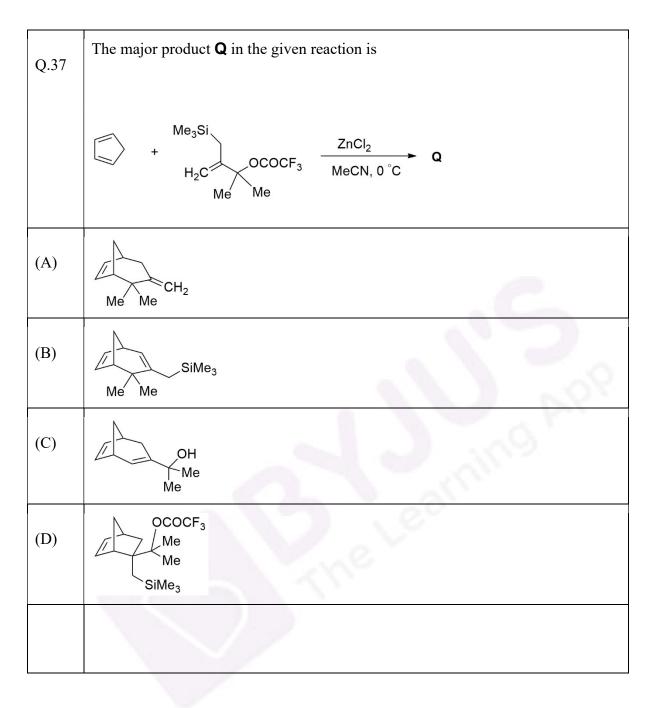
Г

			Α		В	
		Р	Cu	Ι	B ₁₂ -coenzyme	
		Q	Mo	II	Carboxypeptidase	
		R	Co		Nitrate reductase	
		S	Zn	IV V	Cytochrome P-450 Tyrosinase	
B)	P-IV, Q-II, R-	I, S-III	[7
(C)	P-II, Q-IV, R-	V, S-II	I		V)	P.S
(D)	P-V, Q-III, R-	II, S-I	V		2.0	9

Q. 31	The CORRECT statement(s) about the following phase diagram for a hypothetical pure substance X is(are)					
	solid liquid 1 atm gas Temperature					
(A)	The molar volume of solid \mathbf{X} is less than the molar volume of liquid \mathbf{X}					
(B)	X does not have a normal boiling point					
(C)	The melting point of X decreases with increase in pressure					
(D)	On increasing the pressure of the gas isothermally, it is impossible to reach solid phase before reaching liquid phase					
Q. 32	The parameter(s) fixed for each system in a canonical ensemble is(are)					
(A)	temperature					
(B)	pressure					
(C)	volume					
(D)	composition					

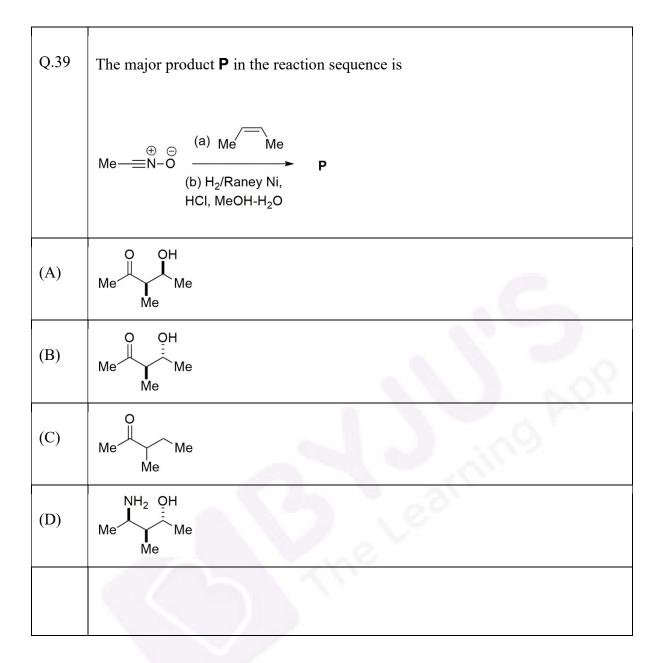


Q.33	The number of peaks exhibited by T in its broadband proton decoupled ¹³ C NMR spectrum recorded at 25 °C in CDCl ₃ is
	Me T
Q.34	The diffraction angle (in degree, rounded off to one decimal place) of (321) sets of plane of a metal with atomic radius 0.125 nm, and adopting BCC structure is
	(Given: the order of reflection is 1 and the wavelength of X-ray is 0.0771 nm)
Q. 35	For the angular momentum operator \hat{L} and the spherical harmonics $Y_{lm}(\theta, \phi)$,
	$(\hat{L}_x^2 + \hat{L}_y^2) Y_{21}(\theta, \phi) = n \hbar^2 Y_{21}(\theta, \phi).$
	The value of <i>n</i> is

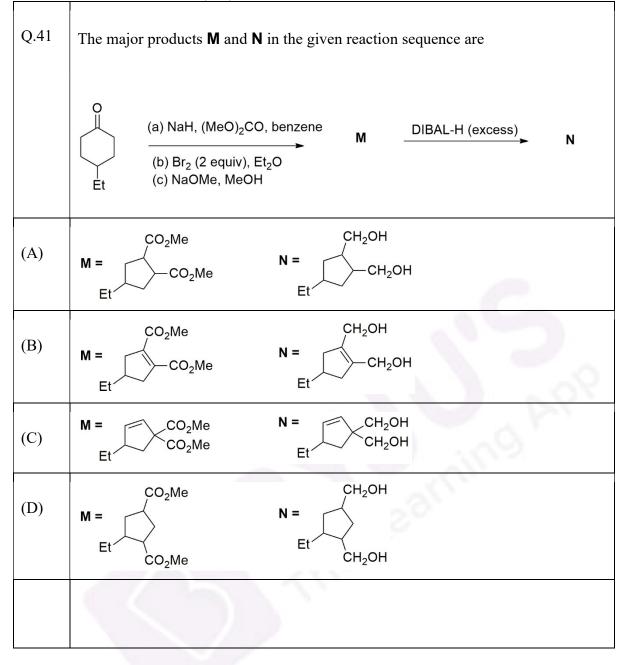

GATE 2022 CHEMISTRY (CY) Q.26 – Q.55 Carry TWO marks Each



Organised by Indian Institute of Technology Kharagpur



GATE 2022 CHEMISTRY (CY) Q.40 The major products $\boldsymbol{\mathsf{P}}$ and $\boldsymbol{\mathsf{Q}}$ in the following reaction sequence are LDA, -78 $^{\circ}$ C (a) Grubbs-II Ρ Q (b) LiBH₄ Br 0 С OH (A) P = Q = 0 0 ŅН (B) Q = P = 0 0 ЮH (C) **Q** = P = 0 OH (D) P = Q =



Graduate Aptitude Test in Engineering

GATE 2022 CHEMISTRY (CY)

	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
GATE 2	2022 CHEMISTRY (CY)
Q.42	Three different crystallographic planes of a unit cell of a metal are given below (solid circles represent atom). The crystal system of the unit cell is $ I = \underbrace{I = I = \underbrace{I = I = I = \underbrace{I = I = I I = I I = I I I = I I = I$
(A)	triclinic
(B)	monoclinic
(C)	tetragonal
(D)	orthorhombic
Q.43	The number of equivalents of H ₂ S gas released from the active site of <i>rubredoxin</i> , <i>2-iron ferredoxin</i> , and <i>4-iron ferredoxin</i> when treated with mineral acid, respectively, are
(A)	4, 6, 8
(B)	0, 2, 4
(C)	1, 2, 4
(D)	0, 2, 3

Page **33**

GATE 2022 CHEMISTRY (CY)

Q.44	The number of $\nu_{S=0}$ stretching vibration band(s) observed in the IR spectrum of the high-spin [Mn(dmso) ₆] ³⁺ complex (dmso: dimethylsulfoxide) is				
(A)	only one				
(B)	two with intensity ratio 1:2				
(C)	two with intensity ratio 1:1				
(D)	six with intensity ratio 1:1:1:1:1				

GATE Galaxy (dash bel ti Eye abiefted) verse afberer GATE 2	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.45	$[Fe(H_2O)_6]^{2+} + [Fe^*(H_2O)_6]^{3+} \xrightarrow{k_{11}} [Fe(H_2O)_6]^{3+} + [Fe^*(H_2O)_6]^{2+}$
	$[Fe(bpy)_{3}]^{2^{+}} + [Fe^{*}(bpy)_{3}]^{3^{+}} \xrightarrow{k_{22}} [Fe(bpy)_{3}]^{3^{+}} + [Fe^{*}(bpy)_{3}]^{2^{+}}$ (bpy = bipyridyl)
	$[Co(NH_3)_6]^{2^+} + [Co^*(NH_3)_6]^{3^+} \xrightarrow{k_{33}} [Co(NH_3)_6]^{3^+} + [Co^*(NH_3)_6]^{2^+}$
	*indicates a radioactive isotope
	The rate constants in the given self-exchange electron transfer reactions at a certain temperature follow
(A)	$k_{11} > k_{22} > k_{33}$
(B)	$k_{22} > k_{11} > k_{33}$
(C)	$k_{33} > k_{22} > k_{11}$
(D)	$k_{22} > k_{33} > k_{11}$

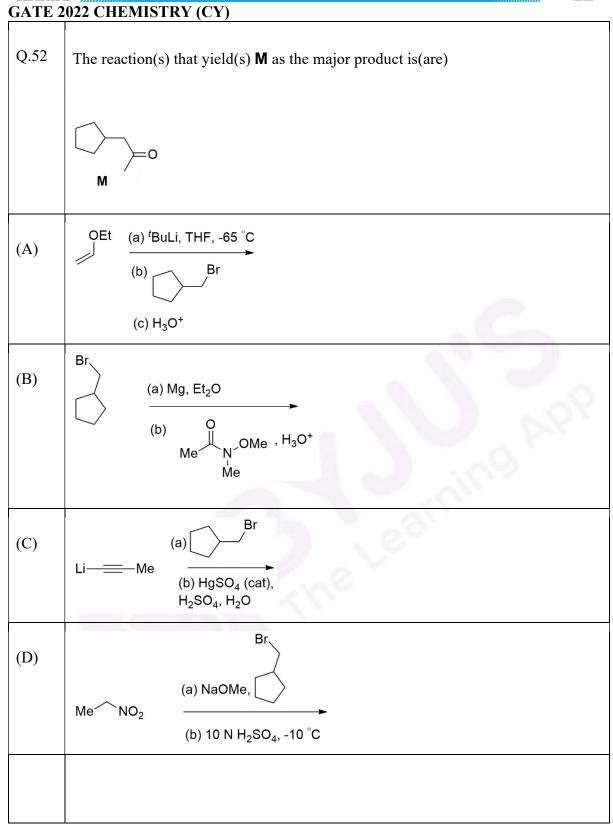
GATE 2022 CHEMISTRY (CY) Q.46 The CORRECT distribution of the products in the following reaction is CH₃ ċ=o ¹³CO OC/// Δ decarbonylation co OC ċο (A) CH3 CH₃ OC///// ¹³CO OC/III **0**3// In CO oc OC' ĊO ĊΟ (75 %) (25 %) (B) CH₃ CH₃ 13CO OC/// OC/// CO 'CO со OC OC ĊΟ ĊO (80 %) (20 %) (C) со со ço ¹³_.(CO ¹³CO H₃C_{//} oc OC/ CO oc 'CO H₃C co OC ċο ĊO ĊΟ (50 %) (25 %) (25 %) (D) CO со H₃C_{///} 13CO OC/ OC/ CH3 00 H₃(OC' ċο ĊΟ ĊO (60 %) (20 %) (20 %)

Page 36

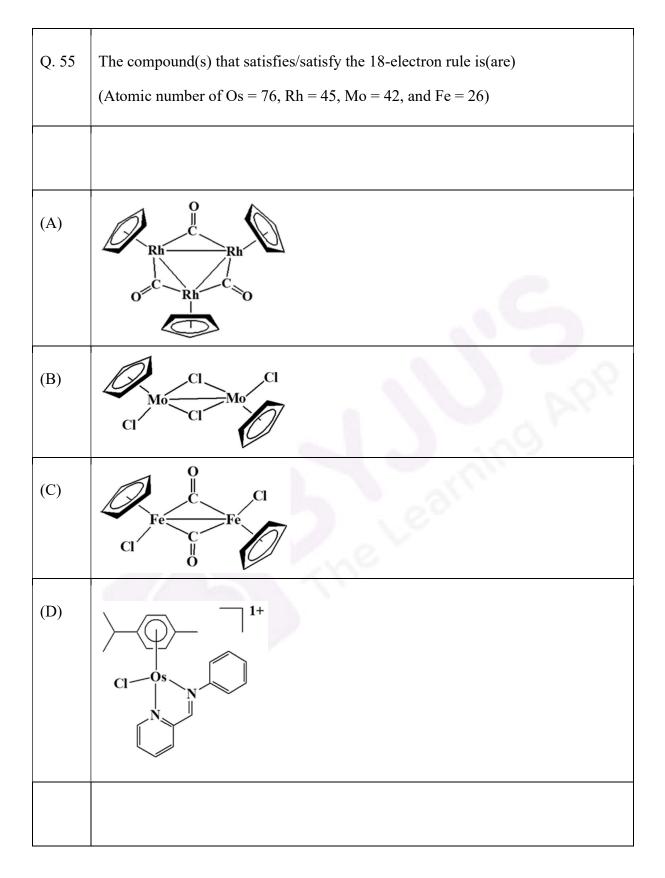
	2022 C.	HEN	AISTRY (CY)						
Q.47	The a	dditi tal pi	on of K4[Fe(CN)6] to a m roduces a brown precipi						
(A)	Fe ³⁺	Fe ³⁺							
(B)	UO ₂ ²	+							
(C)	Th ⁴⁺								
(D)	Cu ²⁺					, C			
							10		
			come spectrum of a Ni	(II) O	ctahedral complex	shows four	<i>a-a</i> bands		
Q.48			s P, Q, R, and S. Match		ctahedral complex ands corresponding Transitions				
					ands corresponding				
			s P, Q, R, and S. Match λ_{max} , nm (ϵ , M ⁻¹ cm ⁻¹)	the ba	ands corresponding Transitions				
		ed as	s P, Q, R, and S. Match λ _{max} , nm (ε, M ⁻¹ cm ⁻¹) 1000 (50)	the ba	ands corresponding Transitions ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$				
		P Q	 λ_{max}, nm (ε, M⁻¹cm⁻¹) 1000 (50) 770 (8) 	I I II III	ands corresponding Transitions ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$ ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$				
		P Q R	 λmax, nm (ε, M⁻¹cm⁻¹) 1000 (50) 770 (8) 630 (55) 	I I II III	ands corresponding Transitions ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$ ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$ ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$				
(A)	labell	P Q R S	 λmax, nm (ε, M⁻¹cm⁻¹) 1000 (50) 770 (8) 630 (55) 	I I II III	ands corresponding Transitions ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$ ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$ ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$				
	labell P-IV	P Q R S	 λmax, nm (ε, M⁻¹cm⁻¹) 1000 (50) 770 (8) 630 (55) 375 (110) 	I I II III	ands corresponding Transitions ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$ ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$ ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$				
(A)	P-IV	P Q R S , Q-I	 λmax, nm (ε, M⁻¹cm⁻¹) 1000 (50) 770 (8) 630 (55) 375 (110) II, R-II, S-I 	I I II III	ands corresponding Transitions ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$ ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$ ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$				

GATE Graduite Actinuite Start II Erroress atMatificial waters atMatimit wi	E 2023	Graduate Aptitude Test in Engineering	Organised by Indian Institute of Technology Kharagpur					
GATE 2022 CHEMISTRY (CY)								
Q.49	In the following table, the left column represents the rigid-rotor type and the right column shows a set of molecules.							
		Q. Symmetric rotor (prolate)	2. CH ₃ Cl					
		R. Spherical rotor	3. C ₆ H ₆					
		S. Asymmetric rotor	4. CH ₃ OH					
			5. CO ₂					
	The COR	RECT match is						
				5				
(A)	P-1, Q-2,	R-3, S-4	\sim	1	2			
(B)	P-3, Q-2, R-1, S-4							
(C)	P-3, Q-5, R-1, S-2							
(D)	P-5, Q-4, R-3, S-2							
L								

GATE GATE 2	Graduate Aptitude 022 CHEMISTRY (CY)	Test in Engineering	l by itute of Technology Kharagpur	
Q. 50	The CORRECT statement vibration of SO ₃ is	regarding the followin	g three normal modes of	
	(1)	(II)	(III)	
		O+ +O- ' indicate out-of-plane motion	CO SO	
				2
(A)	(I) and (II) are infrared act	ive while (III) is infrare	ed inactive	
(B)	(I) is infrared inactive whi	le (II) and (III) are infra	ared active	
(C)	(I) and (III) are infrared in	active while (II) is infra	ared active	
(D)	None of the modes are infi	rared active since SO ₃ l	nas zero dipole moment	



GATE 2	44 2022 CHEMISTRY (CY)
Q.51	The reaction(s) that yield(s) 3-phenylcyclopentanone as the major product is(are)
(A)	$(a) Ph_2CuLi$ (b) H ₃ O ⁺
(B)	$ \begin{array}{c} $
(C)	(a) PhLi (b) H ₃ O ⁺
(D)	$ \begin{array}{c} $
	e de la contra de la La contra de la contra



GATE 2	022 CHEMI	ISTRY (CY)

Brønsted acidity of $B_{10}H_{14}$ is higher than that of B_5H_9
Structurally B ₁₀ H ₁₄ is a <i>closo</i> -borane
The metal-promoted fusion of $B_5H_8^-$ produces $B_{10}H_{14}$
Both $B_{10}H_{14}$ and $B_{10}H_{12}(SEt_2)_2$ have the same number of valence electrons
The CORRECT statement(s) about the Group-I metals is(are)
Reactivity of Group-I metals with water decreases down the group
Among the Group-I metals, Li spontaneously reacts with N ₂ to give a red-brown layer-structured material
Thermal stability of Group-I metal peroxides increases down the group
All the Group-I metal halide are high-melting colorless crystalline solids
,

1

Q.56	For three operators \hat{A} , \hat{B} , and \hat{C} , $\left[\hat{A}, \left[\hat{B}, \hat{C}\right]\right] + \left[\hat{B}, \left[\hat{C}, \hat{A}\right]\right] =$
(A)	$\left[\hat{\mathcal{C}}, \left[\hat{A}, \hat{B}\right]\right]$
(B)	$\left[\hat{C}, \left[\hat{B}, \hat{A}\right]\right]$
(C)	$\left[\left[\hat{B},\hat{A}\right],\hat{C} ight]$
(D)	$\left[\left[\hat{A},\hat{B} ight],\hat{C} ight]$

Q. 57	The difference between the number of Gauche-butane interactions present in ${\bf P}$ and ${\bf Q}$ is
	$ \begin{array}{ccc} $
	F Q
Q.58	The calculated magnetic moment (in BM, rounded off to two decimal places) of a Ce^{3+} complex is

Q.59

The state of the electron in a He⁺ ion is described by the following normalized

GATE 2022 CHEMISTRY (CY)

wavefunction, $\Psi(r,\theta,\phi) = \sqrt{\frac{3}{8}} R_{21}(r) Y_{10}(\theta,\phi) - i \sqrt{\frac{7}{16}} R_{10}(r) Y_{00}(\theta,\phi) + x R_{32}(r) Y_{20}(\theta,\phi).$ Here, R_{nl} and Y_{lm} represent the radial and angular components of the eigenfunctions of He⁺ ion, respectively, and x is an unknown constant. If the energy of the ion is measured in the above state, the probability (rounded off to two decimal places) of obtaining the energy of $-\frac{2}{9}$ atomic unit is Q.60 A certain wavefunction for the hydrogen-like atom is given by $\Psi(r,\theta,\phi) = \frac{2^{\frac{1}{2}}}{81\pi^{\frac{1}{2}}} \left(\frac{z}{a_0}\right)^{5/2} \left(6 - \frac{Zr}{a_0}\right) r \, e^{-Zr/3a_0} \, \cos\theta \; .$ The number of node(s) in this wavefunction is

CATES	
GAIE	
Graduate Aptitude Test in Engineering	
রসিয়ারিকী হ্লানক রসিরাগ্যা হরীয়া	

GATE 2022 CHEMISTRY (CY)Q. 61EMF of the following cellCu | CuSO4(aq, 1.0 mol/kg) | Hg2SO4(s) | Hg(l) | Ptat 25 °C and 1 bar is 0.36 V. The value of the mean activity coefficient (rounded
off to three decimal places) of CuSO4 at 25 °C and 1 bar is[Given: Standard electrode potential values at 25 °C forCu²⁺ + 2e⁻ \rightarrow Cu andHg2SO4 + 2e⁻ \rightarrow 2Hg + SO4-are 0.34 V and 0.62 V, respectively.Consider: RT/F at 25 °C = 0.0256 V]

Page 46

022 CHEMISTRY (CY)
The radius of gyration (in nm, rounded off to one decimal place), for three dimensional random coil linear polyethylene of molecular weight 8,40,000 is
[Given: C–C bond length = 0.154 nm]
The activation energy of the elementary gas-phase reaction $O_3 + NO \rightarrow NO_2 + O_2$ is 10.5 kJ mol ⁻¹ . The value of the standard enthalpy of activation (rounded off to two decimal places in kJ mol ⁻¹) at 25 °C is
[Given: R is 8.314 J mol ⁻¹ K ⁻¹]
Sec. 1
In a collection of molecules, each molecule has two non-degenerate energy levels that are separated by 5000 cm ⁻¹ . On measuring the population at a particular temperature, it was found that the ground state population is 10 times that of the upper state. The temperature (in K, rounded off to the nearest integer) of measurement is
[Given: Value of the Boltzmann constant = $0.695 \text{ cm}^{-1} \text{ K}^{-1}$]
The change in entropy of the surroundings (in J K ⁻¹ , rounded off to two decimal places) to convert 1 mol of supercooled water at 263 K to ice at 263 K at 1 bar is
[Consider: $\Delta_{fus}H^{\circ}$ at 273 K = 6.0 kJ mol ⁻¹ , and the molar heat capacity of water is higher than that of ice by 37.0 J K ⁻¹ mol ⁻¹ in the temperature range of 263 K to 273 K]