

ધોરણ-12 (વિજ્ઞાન પ્રવાહ) ભૌતિક વિજ્ઞાન પ્રાયોગિક (055) વાર્ષિક પરીક્ષા પ્રાયોગિક પરીક્ષા પ્રશ્નપત્રનું પરિરૂપ

સમય : 3 કલાક

કુલ ગુણ : 50

(પ્રાયોગિક પરીક્ષા માટે ગુણભારનું માળખું)

(1) વિભાગ - 1 માં કરાવેલ પ્રયોગમાંથી એક પ્રયોગ 20 ગુણ

(2) વિભાગ - 2 માં કરાવેલ પ્રયોગમાંથી એક પ્રયોગ 20 ગુણ

(3) પ્રયોગને અનુરૂપ મૌખિક પ્રશ્નો 06 ગુણ

(4) સર્ટીફાઈડ થયેલ જર્નલ 04 ગુણ

કુલ 50 ગુણ

• દરેક પ્રયોગ માટે :

(1) પ્રયોગના સાધનોની યોગ્ય ગોઠવણી તથા પ્રયોગ પદ્ધતિ, વિદ્યુત પરિપથ 06 ગુણ (2) અવલોકન કોઠો દોરવો અને યોગ્ય એકમ સાથે અવલોકનો નોંધવા 07 ગુણ (3) ગણતરી / આલેખ 06 ગુણ 4) અંતિમ સાચું પરિણામ / જવાબ 5) કુલ 20 ગુણ

વિભાગ - 1

ક્રમ	પ્રયોગ	પ્રયોગ
	નંબર	99 99
1.	E1	વિદ્યુતસ્થિતિમાનના તફાવત વિરુદ્ધ વિદ્યુતપ્રવાહનો આલેખ દોરી આપેલા તાર માટે એકમ લંબાઈ દીઠ અવરોધ નક્કી કરવો.
2.	E2	મીટરબ્રિજનો ઉપયોગ કરીને આપેલા તારનો અવરોધ નક્કી કરવો અને તે પરથી તારના દ્રવ્યની અવરોધતા નક્કી કરવી.
3.	E3	મીટરબ્રિજનો ઉપયોગ કરી અવરોધના સંયોજનો (શ્રેણી અને સમાંતર)ના નિયમો ચકાસવા.
4.	E4	પોટેન્શિયોમીટરનો ઉપયોગ કરી આપેલા બે પ્રાથમિક કોષ (ડેનિયલ અને લેકલાન્સે કોષ)ના વિદ્યુત
		ચાલક બળ (emf) સરખાવો.
5.	E5	પોટેન્શિયોમીટરનો ઉપયોગ કરી આપેલા પ્રાથમિક કોષનો આંતરિક અવરોધ નક્કી કરવો.
6.	E6	અર્ધ આવર્તનની રીતથી ગૅલ્વેનોમીટરનો અવરોધ નક્કી કરવો અને તેની ફ્રિગર ઑફ મેરિટ શોધવી.
7.	E7	આપેલા ગૅલ્વેનોમીટર (અવરોધ અને ફિગર ઑફ મેરિટ જ્ઞાત હોય તેવા)ને (i) ઈચ્છિત અવધિ (0 થી 30
		mA) ધરાવતા એમીટર અને (ii) ઈચ્છિત અવધિ (0 થી 3V) ધરાવતા વૉલ્ટમીટરમાં રૂપાંતર કરો અને
		તેની ચકાસણી કરવી.
8.	E8	સોનોમીટર અને વિદ્યુતચુંબકનો ઉપયોગ કરી પ્રત્યાવર્તી પ્રવાહ (ઊલટસૂલટ પ્રવાહ - ac) ની આવૃત્તિ
		નક્કી કરો.

વિભાગ **- 2**

ક્રમ	પ્રયોગ નંબર	પ્રયોગ
1.	E9	અંતર્ગોળ અરીસાના કિસ્સામાં u નાં જુદાજુદાં મૂલ્યો માટે U નાં મૂલ્યો શોધવા અને કેન્દ્ર લંબાઈ શોધવી.
2.	E10	બહિર્ગોળ લેન્સ માટે u અને U અથવા 1/u અને I/u વચ્ચેના આલેખ દોરી કેન્દ્ર લંબાઈ શોધવી.
3.	E11	બહિર્ગોળ લૅન્સનો ઉપયોગ કરી બહિર્ગોળ અરીસાની કેન્દ્ર લંબાઈ શોધવી.
4.	E12	બહિર્ગોળ લૅન્સનો ઉપયોગ કરી અંતર્ગોળ લૅન્સની કેન્દ્ર લંબાઈ શોધવી.
5.	E13	આપેલ કાચના પ્રિઝમ માટે આપાતકોણ અને વિચલનકોણ વચ્ચેનો આલેખ દોરી, લઘુત્તમ વિચલનકોણ નક્કી કરવો.
6.	E14	ચલ સૂક્ષ્મદર્શકયંત્ર (ટ્રાવેલિંગ માઈક્રોસ્કોપ)નો ઉપયોગ કરી કાચના સ્લેબ (ચોસલા)નો વક્રીભવનાંક શોધવો.
7.	E15	(i) અંતર્ગોળ અરીસા (ii) બહિર્ગોળ લૅન્સ અને સમતલ અરીસાનો ઉપયોગ કરી આપેલા પ્રવાહી (પાણી)નો વક્રીભવનાંક નક્કી કરવો.
8.	E16	p - n જંકશનની ફોરવર્ડ બાયસ અને રિવર્સ બાયસની સ્થિતિમાં I - V ની લાક્ષણિકતા દર્શાવતાં વક્રો દોરવા.
9.	E17	ઝેનર ડાયોડ માટે લાક્ષણિક વક્ર દોરવા અને તેનો રિવર્સ બ્રેકડાઉન વૉલ્ટેજ નક્કી કરવો .
10.	E18	કૉમન ઍમિટર n-p-n (અથવા p-n-p) ટ્રાન્ઝિસ્ટરની લાક્ષણિકતાનો અભ્યાસ કરવો તથા વૉલ્ટેજ અને પ્રવાહ લબ્ધિ (ગેઈન)નાં મૂલ્યો શોધવા.

ધોરણ-12 (વિજ્ઞાન પ્રવાહ) ભૌતિક વિજ્ઞાન (054) વાર્ષિક પરીક્ષા પ્રશ્રપત્રનું પરિરૂપ

સમય : 3 કલાક પ્રશ્નપત્રનું પારેરૂપ કુલ ગુણ : 100

નોંધઃ આ પરિરૂપ વિદ્યાર્થીઓ, શિક્ષકો, પ્રાશ્ચિકો, મોડરેટર્સ વગેરેના માર્ગદર્શન માટે છે. જે તે વિષયોના પ્રાશ્ચિક તેમજ મોડરેટર્સને માધ્યમિક અને ઉચ્ચતર માધ્યમિક શિક્ષણના બૃહદ્દ હાર્દ/ઉદ્દેશને સુસંગત રહી પ્રશ્ચપત્રની સંરચના બાબતે ફેરફાર કરવાની છૂટ રહેશે.

હેતુઓ પ્રમાણે ગુણભાર :

હેતુઓ	જ્ઞાન (K)	સમજ (U)	ઉપયોજન(A)	ઉચ્ચ વૈચારિક કૌશલ્ય		કુલ
				સંયોજન/વિશ્લેષણ	અનુમાન/મૂલ્યાંકન	
Part-A ગુણ	06	15	16	13		50
Part-B ગુણ	06	15	16	08	05	50
કુલ ગુણ (%)	12	30	32	21	05	100

પ્રશ્નના પ્રકાર પ્રમાણે ગુણભાર : PART-A

ક્રમાંક	પ્રશ્નનો પ્રકાર	પ્રશ્નોની સંખ્યા	કુલ ગુણ
1.	બહુ વિકલ્પ પ્રકારના પ્રશ્નો	50	50

પ્રશ્નના પ્રકાર પ્રમાણે ગુણભાર : PART-В

	9		
ક્રમાંક	પ્રશ્નનો પ્રકાર	પ્રશ્નોની સંખ્યા	કુલ ગુણ
1.	ટૂંકજવાબી પ્રશ્નો (SA-I)	08	16
2.	ટૂંકજવાબી પ્રશ્નો (SA-II)	06	18
3.	લાંબાજવાબી પ્રશ્નો (LA)	04	16
	7 2	કુલ 18	50

પ્રકરણ પ્રમાણે ગુણભાર :

ક્રમ	પાઠ/પ્રકરણનું નામ	પ્રકરણ દીઠ	યુનિટ દીઠ
		ગુણભાર	ગુણભાર
	ભાગ - 1		
1.	વિદ્યુતભારો અને વિદ્યુત ક્ષેત્રો	07	U-1
2.	સ્થિત વિદ્યુત સ્થિતિમાન અને કેપિસિટન્સ	08	24
3.	પ્રવાહ વિદ્યુત	09	
4.	ગતિમાન વિદ્યુતભારો અને ચુંબકત્વ	08	
5.	ચુંબકત્વ અને દ્રવ્ય	05	U-2
6.	વિદ્યુત ચુંબકીય પ્રેરણ	05	26
7.	પ્રત્યાવર્તી પ્રવાહ	08	
8.	વિદ્યુત ચુંબકીય તરંગો	05	
	ભાગ - 2		U-3
9.	કિરણ પ્રકાશ શાસ્ત્ર અને ઉપકરણો	09	25
10.	તરંગ પ્રકાશ શાસ્ત્ર	11	
11.	વિકિરણ અને દ્રવ્યની દ્વેત પ્રકૃતિ	06	U-4
12.	પરમાણુઓ	07	18
13.	ન્યુકિલઅસ	05	
14.	સેમીકન્ડક્ટર્સ ઈલક્ટ્રોનિક્સ દ્રવ્યો, રચનાઓ…	07	U-5 / 07
	કુલ ગુણ	100	07

નોંધ : ● પ્રકરણદીઠ ગુણભારાંક જુદાજુદા પ્રશ્નપત્ર મુજબ બદલાઈ શકે છે. પરંતુ યુનિટ દીઠ ગુણભારાંક બદલી શકાશે નહીં.

ધોરણ-12 (વિજ્ઞાન પ્રવાહ) ભૌતિક વિજ્ઞાન (054) વાર્ષિક પરીક્ષા પ્રશ્રપત્રનું પરિરૂપ

સમય : 3 કલાક કુલ ગુણ : 100

પ્રશ્ન ક્રમ	વિભાગ તથા પ્રશ્નની વિગત	ગુણ
	PART - A	
1 થી 50	બહુવિકલ્પ પ્રકારના 1 ગુણના 50 પ્રશ્નો	50
	PART - B	
	SECTION - A	
1 થી 8	ટૂંક જવાબી પ્રકારના 2 ગુણના 8 પ્રશ્નો	16
	● આ વિભાગમાં 2 પ્રશ્નમાં આંતરિક વિકલ્પ આપવા. (કુલ-2)	
	SECTION - B	
9 થી 14	ટૂંકજવાબી પ્રકારના 3 ગુણના 6 પ્રશ્નો	18
	આ વિભાગમાં 2 પ્રશ્નમાં આંતરિક વિકલ્પ આપવા. (કુલ-2)	
	SECTION - C	
15 થી 18	વિસ્તૃત જવાબ પ્રકારના 4 ગુણના કુલ 4 પ્રશ્નો	16
	આ વિ <mark>ભાગમાં એક પ્રશ્નમાં આંતરિક</mark> વિકલ્પ આપવો. (કુલ-1)	
	કુલ ગુણ	100

નોંધઃ● Part : A નો સમય 1 કલાકનો રહેશે.

- Part : B નો સમય 2 કલાકનો રહેશે.
- પ્રથમ પરીક્ષા માટે પ્રથમ પરીક્ષા સુધીનો અભ્યાસક્રમ લેવાનો રહેશે. જેનું પરિરૂપ વાર્ષિક પરીક્ષાના પરિરૂપ પ્રમાણે
 100 ગુણનું રહેશે.
- પ્રિલિમિનરી પરીક્ષામાં સંપૂર્ણ અભ્યાસક્રમ આવરી લેવાનો રહેશે અને તેનું પરિરૂપ વાર્ષિક પરીક્ષાના પરિરૂપ પ્રમાણેનું 100 ગુણનું રહેશે.

(A) 3.6

(B) 0.6

ગુજરાત માધ્યમિક અને ઉચ્ચતર માધ્યમિક શિક્ષણ બોર્ડ, ગાંધીનગર

ધોરણ-12 (વિજ્ઞાન પ્રવાહ) ભૌતિક વિજ્ઞાન (054) વાર્ષિક પરીક્ષા નમૂનાનું પ્રશ્નપત્ર

		·	£ 00 3 -0 40 0			
સમય : 3 કલાક						કુલ ગુણ : 100
સમય	: 1 કલાક		PART - A			કુલ ગુણ : 50
સૂચનાઓ	: (1) (2) (3) (4)	આ પ્રશ્નપત્રના ભાગ - A માં હેતુલક્ષી પ્રશ્નોની ક્રમ સંખ્યા 1 થી 50 છે અને દ કાળજીપૂર્વક દરેક પ્રશ્નનો અભ્યાસ કરી આપને અલગથી આપેલ OMR પત્રક	રેક પ્રશ્નનો ગુણ 1 l સાચો વિકલ્પ પસ માં જે તે પ્રશ્ન નંબ	છે. ાંદ કરવો. ર સામે (A) O,	(B) O, (C) O , (D)	
	(5)	પ્રશ્નનો જે જવાબ સાચો હોય તેના વિક રફ કાર્ય આ ટેસ્ટ બુકલેટમાં આપેલી જ			દ્દ ● કરવાનું રહેશે.	
	(5) (6)	રફ કાય આ ટસ્ટ બુકલટમાં આપલા જ પ્રશ્નપત્રકમાં ઉપરની જમણી બાજુમાં ચ રહેશે.			MR પત્રકમાં આપેલી	જગ્યામાં લખવાનું
	(7)	વિદ્યાર્થીઓ જરૂર જણાય ત્યાં સાદા કેલ્	કયુલેટર અને લોગ	ા ટેબલનો ઉપય	ોગ કરી શકશે.	
	_	ાભારીત દડાને સિલ્કની દોરી વડે એ ૧૧ બનાવે તો વિદ્યુતભાર પૃષ્ઠ ઘનતા	ισ	ના સમપ્ર		રીત શીટ
(2)	બે વિજભ અસરકાર) tan θ (B) Sin θ રોને એકબીજાથી d અંતરે ગોઠવેલ ક બળ) 2F (B) F/2	(C) C ા છે. જો d/2 જાડ (C) 4F	ાઈની તાંબાન		યે મૂકવામાં આવે તો
(3)	એક બિંદુવ	ાત વિદ્યુતભાર q <mark>ને L બાજુઓ ધર</mark>	ાવતા સમઘનના	. કેન્દ્ર પર મૂકે	લ છે. સમઘનમાં બ	હાર આવતું ફલકસ
	$(A) \frac{q}{\in_{o}}$	(B) શૂન્ય (લ	C) $\frac{621}{\epsilon_0}$	(D)	$\frac{q}{6L^2 \in {}_{o}}$	
		.જયાના ગોળા પર $\frac{3}{\pi}$ c/m 2 પૃષ્ઠ	ડેવિદ્યુતભાર ઘન (C) 0.57			ાર જરૂરી છે ?
		ક્ષેત્રરેખાઓ એકબીજીને છેદતી નર્થ			(B) 0.5 C	
` /	J	આઓ બંધ ગાળાઓ છે.				
	` ′	.ખાઓ એક બીજાને અપાકર્ષે છે.				
	(C)	રેખાઓ વિદ્યુતભારની નજીક ગીચે	ોગીચ છે.			
	(D) વિદ્યુ	તક્ષેત્રને દરેક બિંદુ પાસે એક જ દિશ	ા હોય છે.			
(6)	•	ના કેપેસિટરને 6KV થી ચાર્જ ક માં દળે પ્રાપ્ત કરેલી મહત્તમ ઊંચાઈ		_	દળને ઊંચકવા મારે	ટે વપરાતી હોય તો

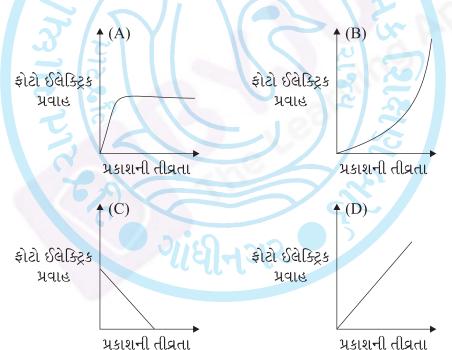
(D) 12

(C) 1.2

(7)	એક બિંદુવત વિદ્યુતભારથી અમુક અંતરે વિદ્યુત સ્થિતિમાન 600V અને વિદ્યુતક્ષેત્ર 200 N/C છે તો બિંદુવત વિદ્યુતભારનું અંતરmહશે.				
	(A) 2 (B) 3 (C) 1 (D) 0				
(8)	ડાઈઈલેક્ટ્રિક સ્ટ્રેન્થનું પારિમાણિક સૂત્રછે.				
(*)	(A) $M^{1}L^{1}T^{-2}Q^{-1}$ (B) $M^{1}L^{2}T^{-2}Q^{-1}$ (C) $M^{-1}L^{-1}T^{2}Q^{1}$ (D) $M^{-1}L^{-1}T^{2}Q^{2}$				
(9)	જો 4C ના વિદ્યુતભારને -10V વિજસ્થિતિમાન ધરાવતા બિંદુથી 5V વિજસ્થિતિમાન ધરાવતા બિંદુ સુધી લઈ જતાં થતું				
	કાર્ય x જૂલ હોય તો x =J.				
	(A) 30 (B) 60 (C) 50 (D) 100				
(10)	20Ω અવરોધક તારને વર્તુળકાર વાળતાં તેના વ્યાસાંત બિંદુઓ વચ્ચેનો અસરકારક અવરોધ થાય .				
	(A) 5Ω (B) 10Ω (C) 15Ω (D) 20Ω				
(11)	એક કાર્બન અવરોધ પરના રંગના ચાર પટ્ટા અનુક્રમે નારંગી, લીલો, ગોલ્ડન અને સિલ્વર કલરના છે તો તેનો				
અવરોધથાય.					
	(A) $2.5 \pm 10\% \Omega$ (B) $3.5 \pm 5\% \Omega$ (C) $3.5 \pm 10\% \Omega$ (D) $350 \pm 10\% \Omega$				
(12)	એક તારનો અવરોધ 10 Ω છે તેની લંબાઈમાં n ટકાનો વધારો કરતાં તેનો નવો અવરોધ 10.2 Ω થાય છે તો				
	n=				
(10)	(A) 1 (B) 2 (C) 3 (D) 4 નીચેના પૈકી મોબિલિટીનું સાચું સૂત્રછે.				
(13)					
	(A) $\mu = \frac{m\tau}{e}$ (B) $\mu = \frac{em}{\tau}$ (C) $\mu = \frac{e\tau}{m}$ (D) $\mu = \frac{e}{m}$				
(14)	એક પ્રવાહખંડ $\Delta I = \Delta x$ તે ને ઉગમબિંદુ પાસે મૂકેલ છે તેમાંથી 10 A વિજપ્રવાહ વહે છે, જો $\Delta x = 1~\mathrm{cm}$ હોય તો				
	બિંદુ P પાસે ચુંબકીય ક્ષેત્ર હશે.				
	p				
	$0.5 \mathrm{m}$				
	a all to the second of the sec				
	$\begin{array}{c} \longrightarrow X \\ \Delta x_1 \end{array}$				
	(A) $-4 \times 10^{-8} \hat{1}$ (B) $4 \times 10^{-8} \hat{1}$ (C) $4 \times 10^{-8} \hat{1}$ (D) $4 \times 10^{-8} \hat{1}$				
(15)	m જેટલી ચુંબકીય ડાઈપોલ મોમેન્ટ ધરાવતું વર્તુળાકાર વિદ્યુતપ્રવાહધારીત ગૂંચળું B ે તીવ્રતાવાળા ચુંબકીય				
(13)	ક્ષેત્રમાં મુક્ત રીતે ભ્રમણ કરે છે. આ ગૂંચળાને તેના સમતલને લંબ અક્ષ સાથે 30º નું ભ્રમણ કરાવતાં થતું કાર્ય				
	(A) MB (B) $\frac{\sqrt{3}}{2}$ MB (C) $\frac{MB}{2}$ (D) શૂન્ય				
	(z) $\frac{1}{2}$ (z) $\frac{1}{2}$				

[5]

-	***						
(16)	સાઈક્લોટ્રોનમાં વિ	સાઈક્લોટ્રોનમાં વિદ્યુતભાર					
	(A) હંમેશાં પ્રવેગિ	ત હોય છે.					
	(B) બે dees (ડિસ) વચ્ચે ચુંબકીય ક્ષેત્રના કારણે ઝડપ વધે છે.						
	(C) ડિ(dee)માં ટ	ઝડપ વધે છે.					
		ઝડપ ઘટે છે અને dees વચ્ચે ૦	ડપ વધે છે.				
(17)	10 cm લંબાઈ અને ગણો.	M=10 ⁶ A/m વાળું પાતળા	નળાકાર આકારનું કાયમી ચું	બક છે તો મેગ્નેટાઈઝેશન પ્રવાહ I _™			
	(A) 10^2 A	(B) 10^4 A (C)	$10^{5} A$ (D) 10	⁶ A			
(18)	m ચુંબકીય ચાકમાત્ર	માવાળા એક ચુંબકને <mark>ચુંબ</mark> કીય ^{હે}	ોત્ર H માં 360° જેટલું ઘુમાવત	ાાં થતું કાર્યછે.			
	(A) 0 (B)	3) mH (C) 2n	nH (D) 2π mH				
(19)	$\frac{\mathrm{B}^2}{2\mu_0}$ નું પારિમાર્ષિ	દોક સૂત્રછે.	4/18				
	(A) $M^{-1}L^{1}T^{2}$	(B) $M^{1}L^{-1}T^{-2}$	$(C) M^{-1}L^{-1}T^{-2}$	(D) $M^1L^1T^2$			
(20)	Lm લંબાઈની એક	યોકસ તકતીને xy સમતલમાં	મૂકવામાં આવેલ છે ત્યાં ચુંબક	ીયક્ષેત્ર			
	$\overrightarrow{B} = B_0 (2\overrightarrow{1} + 3)$	$\hat{j} + 4k)$ Tવડે અપાય છે. B_0	અચળાંક છે તો તકત <mark>ી સાથે</mark> સં	કળાતું ફલકસ Wb હશે.			
	$(A) 2B_0L^2$	(B) $3B_0L^2$	$(C) 4B_0L^2$	(D) $\sqrt{29} \mathrm{B_0L}^2$			
(21)	એક સોલેનોઈડની લંબાઈ ℓ અને આડછેદનું ક્ષે <mark>ત્રફળ A છે તેમાં આંટ</mark> ાની સંખ્યા N છે જો આંટાની સંખ્યા N ન						
	બદલાય તો તેનું અ	બદલાય તો તેનું આત્મપ્રેરકતા કયા <mark>રે વધે</mark> ?					
	(A) <i>ℓ</i> અને A બંને	વધે તો					
	(B) ℓ ઘટે અને A	વધે ત્યારે					
	(C) ℓવધે અને A ઘ	.ટે ત્યારે					
	(D) ℓઅને A બંને ઘ	ાટે ત્યારે	5	~			
(22)	એક ધાતુનો 1 m લાં	બો તાર 0.1 T ના ચુંબકીય ક્ષેત્ર	ાને લંબ ૩ પે 5 ms ⁻¹ ની ઝડપથ	ી ગતિ કરે છે. તો તેના બે છેડા વચ્ચે			
,		Vહશે.	Merc				
	(A) 1	(B) 2	(C) 0.5	(D) 0.25			
(23)	` ′	,		ારે આઉટપુટ વૉલ્ટેજ 24 V માપે છે			
		ક્ય A મળે.	Ç	<u> </u>			
	(A) $\frac{1}{\sqrt{2}}$	(B) $\sqrt{2}$	(C) 2	(D) $2\sqrt{2}$			
(24)		ટર સાથે 0.16 mH ના ઈન્ડકર મ _z મળે .	રને સમાંતર જોડેલું છે. તેમન	ો અસરકારક અવરોધ 20Ω છે તો			
	(A) 9×10^4	(B) 16×10^7	(C) 8×10^5	(D) 9×10^3			


(25)	8 Ω રિએકટન્સ અને 6 અવરોધ Ω		ાને ડી.સી. પરિપથમાં જોડતાં	પરિપથનો અસરકારક					
	(A) 14	(B) 8	(C) 6	(D) $\frac{24}{7}$					
(26)	AC સ્ત્રોત સાથે જોડેલા ઈ	ન્ડકટરમાં સંગ્રહ પામતાં સરે	રાશ પાવર કેટલો ?	,					
	$(A) \frac{1}{2} \operatorname{Li}^2$	(B) Li ²	(C) O	(D) Li					
(27)	વિદ્યુત ચુંબકીય તરંગની	વિદ્યુત ચુંબકીય તરંગની તીવ્રતામાં વિદ્યુતક્ષેત્ર અને ચુંબકીય ક્ષેત્રના ઘટકોના ફાળાનો ગુણોત્તર							
	(A) C:1	(B) $C^2:1$	(C) 1:1	(D) $\sqrt{29} \text{ C} : 1$					
(28)			.કિરણથી ઉત્પન્ન થતી વિદ્યુત ઉત્પન્ન થતી વિદ્યુતક્ષેત્રની તી	ક્ષેત્રની તીવ્રતા E છે. તેટલા જ વ્રતા					
	(A) $\frac{E}{2}$	(B) 2E	(C) $\frac{E}{\sqrt{2}}$	(D) $\sqrt{2}$ E					
(29)	કેપેસિટરનો ચાર્જિંગ પ્રવ	ાહ 0.25 A છે . તો તેની પ્લેટો	ાની આસપાસનો સ્થાનાંતર પ્ર	વાહ A.					
(30)	(A) 1.25 અંતર્ગોળ અરીસાનો ની ^{રં}	(B) 1.5 યેનો અડધો હિસ્સો કાળો કરવ	(C) 0.25 મામાં આવે તો	(D) 0.5					
	(A) પ્રતિબિંબ અંતર વધે છે.								
	(B) પ્રતિબિંબ અંતર ઘ	ટે છે.	1 2	50					
	(C) પ્રતિબિંબ તીવ્રતા વ		0 /3/	2					
	(D) પ્રતિબિંબની તીવ્રત		- 1)	$\widetilde{\Xi}$					
(31)		યામાંથી કાચમાં ગતિ કરે છે ત્ય	યારે						
	(A) તેની તરંગલંબાઈ ઘ								
	(B) તેની તરંગલંબાઈ								
	(C) તરંગલંબાઈમાં કોલ		1010						
	(D) તેની આવૃત્તિ ઘટે છે		4215	4					
(32)		. એક અવલોકનકાર પાણીમ ાતી તેની આભાસી ઊંડાઈ		છલીને જોઈ શકે છે. ($\mu = \frac{4}{3}$).					
	(A) 3	(B) 9	(C) 12	(D) 16					
(33)	એક સમબાજુ પ્રિઝમ માટે	ટે આપાતકોણ 45° હોય તો તે	નો લઘુત્તમ વિચલન કોણ …						
	(A) 30°	(B) 60°	(C) 45°	(D) 90°					
(34)	એસ્ટિંગ્મેટિઝમ (માનવ	આંખ) ની ખામી	થી દૂર કરી શકાય .						
	(A) અંતર્ગોળ લેન્સ	(B) બહિર્ગોળ લેન્સ	(C) નળાકારીય લેન્સ	(D) પ્રિઝમીય લેન્સ					

મેક અને ઉચ્ચતર માધ્યમિક શિક્ષણ બોર્ડ, ગાંધ

- યંગની ડબલ સ્લીટના પ્રયોગમાં 4 થી પ્રકાશીય શલાકાની પહોળાઈ $2 \times 10^{-2} \, \mathrm{cm}$ હોય તો 6દ્દી પ્રકાશીય શલાકાની (35)પહોળાઈ cm
 - (A) 10^{-2}
- (B) 3×10^{-2} (C) 2×10^{-2}
- (D) 1.5×10^{-2}
- અડચણની ધાર પાસેથી તરંગની વાંકા વળવાની ઘટનાને કહે છે. (36)
 - (A) પરાવર્તન
- (B) વિવર્તન
- (C) વ્યતિકરણ (D) વક્રીભવન
- Iુ તીવ્રતાનું અધુવીભૂત પ્રકાશનું કિરણ પોલેરોઈડ પર આપાત થાય છે તો નિર્ગમન પામતા પ્રકાશની તીવ્રતા (37)
 - (A) $\frac{\text{Io}}{2}$
- (B) Io

- (D) શ<u></u>ન્ય
- પ્રકાશનું કિરણ લંબગત છે તેવુંપ્રકાશીય ઘટનાથી જાણી શકાય છે. (38)
 - (A) विवर्तन
- (B) વ્યક્તિકરણ (C) ધ્રુવીભવન (D) આ બધી જ
- એક સ્લિટ વડે થતી વિવર્તન ભાતમાં દ્વિતીય અધિકતમ મેળવવા માટેની શરત છે. (39)
- $a \sin \theta = n \lambda$ (B) $a \sin \theta = (2n-1) \frac{\lambda}{2}$ (C) $a \sin \theta = (2n-1) \lambda$ (D) $a \sin \theta = \frac{n\lambda}{2}$
- (40) પ્રકાશની તીવ્રતામાં થતા ફેરફાર સાથે ફોટોઈલેક્ટ્રિક પ્રવાહમાં થતા ફેરફારનો આલેખ નીચેનામાંથી કયો છે?

- એક x-ray ટયૂબ 50kV પર કાર્ય કરે છે. તો તેનાથી ઉત્પન્ન થતી મહત્તમ તરંગલંબાઈ Å (41)
 - (A) 0.75
- (B) 0.25
- (C) 1
- 100 V ના વિજસ્થિતિમાન તફાવત હેઠળ પ્રવેગિત કરેલ એક ઈલેકટ્રોનની દ-બ્રોગ્લી તરંગ લંબાઈ (42)વિસ્તારમાં પડે.
 - (A) ગામા કિરણો (B) x કિરણો
- (C) પારજાંબલી (D) દેશ્ય પ્રકાશ

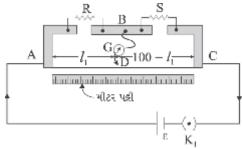
(43)	એક કક્ષીય ઈલેકટ્રોનની સ્થિતિ ઊર્જા અને ગતિઊર્જા અનુક્રમે E, અને ઈટ હોય તો બ્હોર મોડેલ અનુસાર						
	E						
	(A) $E_k = -\frac{E_p}{2}$	(B) $E_k = E_p$	$(C) E_k = 2 E_p$	(D) $E_k = -2E_p$			
(44)	સૌથી ઊંચા ઊર્જા સ્તર n :	= ∞ માં રહેલ ઈલેકટ્રોનની (ઊર્જા eV.				
	(A) શૂન્ય	(B) ∞	(C) 13.6	(D) -13.6			
(45)	ધરા સ્થિતિમાં રહેલો હાઈ, થાય	ડ્રોજન પરમાણું 10.2 eV ઊજ	ર્જાનું શોષણ કરે છે. તો તેનું કે	ાણીય વેગમાન વધીનેJs			
	(A) 1.05×10^{-34}	(B) 3.16×10^{-34}	(C) 2.11×10^{-34}	(D) 4.22×10^{-34}			
(46)	ભારે સ્થિર ન્યુક્લિયસમાં ન	ન્યુટ્રોનની સંખ્યા પ્રોટોન કરત	ાં વધારે હોય છે. કારણ કે…				
	(A) ન્યુટ્રોન પ્રોટોન કરતાં	.ભારે છે.					
	(B) પ્રોટોન અને ન્યુટ્રોન	વચ્ચે લાગતું સ્થિત વિદ્યુત બ	મળ				
	(C) βક્ષયદ્વારા ન્યુટ્રોન પ્ર	યોટોનમાં ક્ષય પામે છે .	112				
	(D) ન્યુટ્રોન્સ વચ્ચે લાગતું	ું ન્યુક્લિયર બળ પ્રોટોન્સ વચ્	યે લાગતા બળ કરતા <mark>ં નબળું</mark> હ	હોય છે.			
(47)	એક રેડિયો એક્ટિવ પદાર્થનું દળ 40 દિવસમાં પ્રારંભિક દળ કરતાં $\frac{1}{16}$ માં ભાગનું થતું હોય તો તેનું અર્ધ આયુ						
	દિવસ હ		10				
	(A) 20	(B) 10	(C) 5	(D) 2.5			
(48)	32 P→+ e +	⊽ (એન્ટિ ન્યૂટ્રિનો)	2				
	(A) 19 N	(B) ${11 \atop 5}$ B	$(C)_{16}^{32}$ S	(D) $^{22}_{10}$ Ne			
(49)	આકૃતિમાં દર્શાવેલ આદર્શ જંકશન ડાયોડના AB છેડાઓ વચ્ચે વહે તો વીજપ્રવાહA.						
	$\frac{A}{+4V}$	$ \begin{array}{cccc} 1 & & \Omega & & B \\ \hline \end{array} $					
	(A) 10 ⁻²	(B) 10 ⁻¹	(C) 10 ⁻³	(D) 0			
(50)	NOR ગેટનું બુલીયન સમ	ીકરણછે	1315				
	(A) $y = \overline{A}$	(B) $y=A+B$	(C) $y=A\cdot B$	(D) $y = \overline{A+B}$			

સમય: 2 કલાક

PART - B

કુલ ગુણ : 50

સૂચનાઓ : (1) આ પ્રશ્નપત્રના પાર્ટ - B માં કુલ ત્રણ વિભાગ છે.

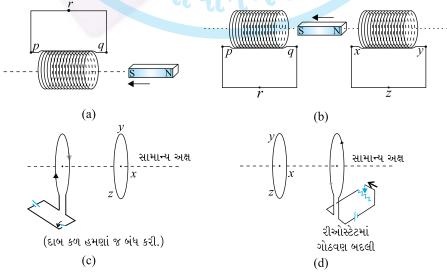

- (2) બધાજ પ્રશ્નો ફરજિયાત છે. વિકલ્પો આંતરિક છે.
- (3) જમણી બાજુના અંક પ્રશ્નનાં ગુણ દર્શાવે છે.

Section - A

• નીચે આપેલ પ્રશ્ન નં. 1 થી 8 ટૂંક જવાબી પ્રશ્નોના ઉત્તર આપો. (દરેકના 2 ગુણ)

[16]

- (1) વિદ્યુત બળ ક્ષેત્રરેખા વ્યાખ્યાયીત કરી તેની અગત્યની બે લાક્ષણિકતા જણાવો.
- (2) મીટરબ્રીજમાં તટસ્થ બિન્દુ A થી 33.7 cm અંતરે મળે છે. જો S સાથે સમાંતરે 12 અવરોધ જોડવામાં આવે તો તટસ્થ બિન્દુ 51.9 cm અંતરે મળે છે તો R અને S નાં મૂલ્યો શોધો.



- (3) કારની બેટરીને તેને ચાલુ કરતી મોટર સાથે જોડતા તાર 300 A વિદ્યુત પ્રવાહ વહન કરે છે. (થોડાક સમય માટે). આ તાર 70 cm લાંબા હોય અને તેમની વચ્ચેનું અંતર 1.5 cm હોય તો એકમ લંબાઈ દીઠ આ તારો વચ્ચે લાગતું બળ કેટલું હશે? આ બળ આકર્ષી હશે કે અપાકર્ષી?
- (4) ખૂબ નજીક વિંટાળેલા 800 આંટા વાળા અને 2.5 x 10⁴ m² આડછેદનું ક્ષેત્રફળ ધરાવતા સોલેનોઈડમાંથી 3.0 A વિદ્યુત પ્રવાહ પસાર થાય છે. સોલેનોઈડ કઈ રીતે ગજિયા–ચુંબકની જેમ વર્તશે તે સમજાવો.

અથવા

પૃથ્વીનું ચુંબકીય ક્ષેત્ર વિષુવવૃત્ત પાસે લગભગ 0.4 G છે. પૃથ્વીની દ્વિ-ધ્રુવી ચાકમાત્રા શોધો.

(5) નીચેની આકૃતિઓ (a) થી (d) દ્વારા વર્ણવેલ પરિસ્થિતિઓમાં પ્રેરિત વિદ્યુત પ્રવાહની દિશા જણાવો.

- (6) વિદ્યુત ચુંબકીય તરંગોની કોઈપણ ચાર લાક્ષણિકતાઓ જણાવો.
- (7) ¹⁶O ના ઉદાહરણ દ્વારા ન્યુક્લિઅસની બંધન ઊર્જા સમજાવો.

અથવા

એક atomic mass unit (u) ને સમતુલ્ય ઊર્જા પ્રથમ Joule અને પછી MeV માં શોધો. $^{16}_{8}$ O ની દળક્ષતિને MeV/C² માં દર્શાવો

(8) વોલ્ટેજ નિયંત્રક તરીકે ઝેનર ડાયોડનો ઉપયોગ યોગ્ય પરિપથ સહિત સમજાવો.

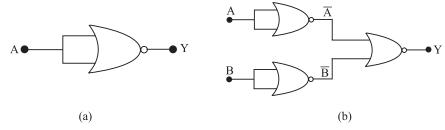
• નીચે આપેલ પ્રશ્ન નં. 9 થી 14ના માગ્યા પ્રમાણે ઉત્તર આપો. (દરેકના 3 ગુણ)

[18]

(9) 220 V નાં વૉલ્ટેજ પર એક ઓરડામાં એક દિવસમાં 5 કલાક AC ચાલે છે. 10 m લાંબા અને 1 mm ત્રિજયાના તાંબાના તારથી તે ઓરડામાં વાયરિંગ કરેલું છે. દરરોજનાં 10 કોમર્શિયલ યુનિટ પાવર વપરાય છે તો તારમાં કેટલામાં ભાગની જૂલ ઉષ્મા જશે. જો એલ્યુમિનિયમના તેટલા જ વ્યાસવાળા તારનું વાયરિંગ કરવામાં આવે તો કેટલા ટકા જુલ ઉષ્માનો વ્યય થશે ?

 $g_{cu} = 1.7 \times 10^{-8} \text{ m, S}_{AL} = 2.7 \times 10^{-8} \text{ m}$

અથવા


કોષોનું સમાંતર જોડાણ એટલે શું ? બે કોષોનાં સમાંતર જોડાણ માટે સમતુલ્ય emf નું સૂત્ર મેળવો.

- (10) R ત્રિજયા અને N આંટા ધરાવતા એક વર્તુળાકાર ગુંચળામાંથી I વિદ્યુતપ્રવાહ પસાર થાય છે. તો તેની અક્ષપર કેન્દ્રથી x અંતરે ઉદ્ભવતુ ચુંબકીય ક્ષેત્ર B = $\frac{\mu_0 |R^2 N}{2 (x^2 + R^2)^{3/2}}$ છે, તેમ સાબિત કરો.
- (11) હાઈગેન્સનો સિદ્ધાંતની મદદથી સમતલ તરંગોનું વક્રીભવન સમજાવો.
- (12) બે ટેકરીઓ ઉપર રહેલા બે ટાવરો એકબીજાથી 40 km દૂર છે. તેમને જોડતી રેખા, બરાબર વચ્ચે આવેલી ટેકરીની 50 m ઉપરથી પસાર થાય છે. નોંધપાત્ર અસરો સિવાય બે ટાવરો વચ્ચે મોકલી શકાય તેવા રેડિયો તરંગોની સૌથી વધુ તરંગ લંબાઈ કેટલી હશે ?
- (13) (a) 5.4 x 106 ms ¹ ની ઝડપથી ગતિ કરતા ઈલેક્ટ્રોન અને
 - (b) 30.0 ms⁻¹ ની ઝડપથી ગતિ કરતા 150 g ના બોલ, સાથે સંકળાયેલ ડિ-બ્રોગ્લી તરંગ લંબાઈ કેટલી હશે ?

અથવા

ફોટો ઈલેકટ્રીક અસર પ્રકાશનાં તરંગવાદથી સમજાવી શકાતી નથી. શા માટે?

(14) માત્ર NOR ગેટનો ઉપયોગ કરીને આકૃતિ મુજબ બનતા પરિપથો માટે ટ્રુથટેબલ લખો. આ પરિપથો વડે થતા લોજીક ઓપરેશન (OR, AND, NOT) નક્કી કરો.

Section - C

• નીચે આપેલ પ્રશ્ન નં. 15 થી 18ના માગ્યા પ્રમાણે ઉત્તર આપો. (દરેકના 4 ગુણ)

- [16]
- (15) બે વિદ્યુત ભારો -q અને +q અનુક્રમે (0, 0, -a) અને (0, 0, a) બિન્દુઓએ રહેલાં છે.
 - (a) (0,0,z) અને (x,y,o) બિંદુઓએ વિદ્યુત સ્થિતિમાન કેટલું છે?
 - (b) સ્થિતિમાન, ઉગમબિંદુથી કોઈ બિંદુના અંતર r પર, r/a>> 1 હોય ત્યારે કેવી રીતે આધારિત છે તે દર્શાવતું સૂત્ર મેળવો.
 - (c) એક નાના પરીક્ષણ વિદ્યુતભારને x અક્ષ પર (5, 0, 0) બિંદુથી (-7, 0, 0) બિંદુ સુધી લઈ જવામાં કેટલું કાર્ય થશે ? જો પરિક્ષણ વિદ્યુત ભારનો માર્ગ તેજ બિંદુઓ વચ્ચે x- અક્ષપર ન હોત તો જવાબમાં ફેર પડે ?
- (16) એક ac પરિપથમાં ઈન્ડકટર L અને અવરોધક R શ્રેશીમાં જોડેલ છે. આ પરિપથ માટે ઈમ્પિડન્સનું સૂત્ર મેળવો અને પરિપથના સરેરાશ પાવરનું સૂત્ર આ પરિપથ માટે મેળવો.

અથવા

220v, $50\,\mathrm{H_Z}$ ac સ્ત્રોત સાથે 200 Ω નો અવરોધક અને $15.0\,\mathrm{\mu F}$ ના કેપેસીટરને શ્રેશીમાં જોડવામાં આવેલ છે. (a) પરિપથનો પ્રવાહ ગણો (b) અવરોધક અને કેપેસીટરનાં બે છેડા વચ્ચે વૉલ્ટેજ (rms) શોધો. શું આ વૉલ્ટેજનો બેજિક સરવાળો સ્ત્રોત વૉલ્ટેજ કરતાં વધુ છે ? જો હા, તો આ વિસંગતતાનો ઉકેલ જણાવો.

- (17) અરીસાનાં સૂત્રો ઉપયોગ કરીને સાબિત કરો કે :
 - (a) અંતર્ગોળ અરીસાના f અને 2fની વચ્ચે વસ્તુને મુકવામાં આવે તો વસ્તુનું સાચું પ્રતિબિંબ 2fથી દૂર મળે.
 - (b) બહિર્ગોળ અરીસો હંમેશાં વસ્તુનાં સ્થાનથી સ્વતંત્ર એવું આભાસી પ્રતિબિંબ જ આપે છે.
 - (c) બહિર્ગોળ અરિસા વડે મળતું પ્રતિબિંબ હંમેશાં કદમાં નાનું અને અરીસાનાં ધ્રુવ તેમજ મુખ્ય કેન્દ્રની વચ્ચે જ હોય છે.
- (18) રીડબર્ગ સૂત્રનો ઉપયોગ કરી, હાઈડ્રોજન વર્ણપટની લાયમન શ્રેણીની પ્રથમ ચાર વર્ણપટ રેખાઓની તરંગ લંબાઈઓની ગણતરી કરો.

• • •