

Oxidation Number Chemistry Questions with Solutions

Q1. What is the oxidation number of sulfur in sulphuric acid (H_2SO_4) ?

- (a) 4
- (b) 6
- (c) 8
- (d) None of the above

Answer: (b), The oxidation number of sulphur in sulphuric acid (H_2SO_4) is 6.

Calculation:

1 X 2 + x + 4 X - 2 = 0

2 + x - 8 = 0

```
x = 6
```

So, option (b) is correct.

Q2. What is the oxidation number of chromium in calcium dichromate (CaCr₂O₇)?

- (a) 4
- (b) 6
- (c) 8
- (d) None of the above

Answer: (b), The oxidation number of chromium in calcium dichromate $(CaCr_2O_7)$ is 6. **Calculation:**

```
2 + 2x + 7 X (-2) = 0

2 + 2x - 14 = 0

2x = 12

x = 6

So, option (b) is correct.
```

Q3. What is the oxidation number of nitrogen in nitric acid (HNO₃)?

- (a) 3
- (b) 5
- (c) 7
- (d) None of the above

Answer: (b), The oxidation number of nitrogen in nitric acid (HNO_3) is 5.

Calculation:

1 + x + 3 X (-2) = 0 1 + x - 6 = 0 x - 5 = 0 x = 5So, option (b) is correct.

Q4. Which of the following statements between HCIO₄ and HCIO₃ is true?

- (a) The oxidation number of chlorine in HClO₄ has been decreased in HClO₃
- (b) The oxidation numbers for all atoms are the same in both molecules
- (c) The oxidation number for chlorine in $HCIO_4$ has increased in $HCIO_3$
- (d) The oxidation number of oxygen in $HCIO_4$ has been decreased in $HCIO_3$

Answer: (a), The oxidation number of chlorine in $HCIO_4$ has been decreased in $HCIO_3$ is true. **Explanation:** To understand it better, foremost we will calculate the oxidation number of $HCIO_4$ and $HCIO_3$.

The oxidation number of chlorine in HClO₄ will be:

1 + x + 4 X (-2) = 0 1 + x - 8 = 0 x - 7 = 0 x = 7

The oxidation number of chlorine in HClO₃ will be:

1 + x + 3 X (-2) = 0 1 + x - 6 = 0 x - 5 = 0 x = 5Thus, we can clearly

Thus, we can clearly see that oxidation number in $HCIO_4$ has been decreased in $HCIO_3$. So option (a) is correct.

Q5. What is the oxidation number of carbon in CH₂Cl₂?

- (a) 2
- (b) 4
- (c) 6
- (d) None of the above.

Answer: (d), The oxidation number of carbon in CH_2CI_2 is zero.

```
Calculation:
```

```
x + 2 X 1 + 2 X (-1) = 0
x + 2 - 2 = 0
```

```
x = 0
```

The oxidation number of carbon in $\mbox{CH}_2\mbox{Cl}_2$ is zero.

So, option (d) is correct.

Q6. Chlorine is in +1 oxidation number in

- (a) HCI
- (b) HCIO₄
- (c) ICI
- (d) CI_2O

(e) None of the above

Answer: (d), Chlorine is in +1 oxidation number in Cl_2O .

Explanation: To understand it better, foremost we will calculate the oxidation number of HCl, HClO₄, ICl and Cl_2O .

The oxidation number of chlorine in HCI will be:

1 + x = 0x = -1

The oxidation number of chlorine in HClO₄ will be:

1 + x + 4 X (-2) = 0 1 + x - 8 = 0 x - 7 = 0 x = 7

The oxidation number of chlorine in ICI will be:

1 + x = 0 x = -1

The oxidation number of chlorine in Cl₂O will be:

2x + (-2) = 0 2x = 2 x = 1

Thus, chlorine is in +1 oxidation number in Cl_2O . So, option (d) is correct.

Q7. When $K_2Cr_2O_7$ is converted to K_2CrO_4 , the change in the oxidation number of chromium is

- (a) 0
- (b) 2
- (c) 4
- (d) None of the above

Answer: (a), When $K_2Cr_2O_7$ is converted to K_2CrO_4 , the change in the oxidation number of chromium is zero.

Explanation: To understand it better, foremost we will calculate the oxidation of $K_2Cr_2O_7$ and K_2CrO_4 . The oxidation number of chromium in $K_2Cr_2O_7$ is:

2 X 1 + 2x + 7 X (-2) = 0 2 + 2x - 14 = 0 2x - 12 = 0 2x = 12 x = 6

The oxidation number of chromium in K_2CrO_4 is:

2 X 1 + x + 4 X (-2) = 0 2 + x - 8 = 0

x - 6 = 0

x = 6

Thus, the oxidation number of chromium does not change when $K_2Cr_2O_7$ is converted to K_2CrO_4 . So, option (a) is correct.

Q8. What is the oxidation number of chlorine in HOCI?

- (a) 1
- (b) 3
- (c) 5
- (d) None of the above

Answer: (a), The oxidation number of chlorine in HOCI is 1.

Calculation:

The oxidation number of chlorine in HOCI will be:

1 + (-2) + x = 0

-1 + x = 0

The oxidation number of chlorine in HOCI is one.

So, option (a) is correct.

Q9. Oxidation number of oxygen in O₂ molecule is

- (a) 0
- (b) 1
- (c) 2
- (d) None of the above

Answer: (a), Oxidation number of oxygen in O_2 molecule is zero.

Q10. The process in which oxidation number increases is known as

- (a) Oxidation
- (b) Reduction
- (c) Catalysis
- (d) None of the above

Answer: (a), The process in which oxidation number increases is known as oxidation.

Q11. Which element in the given compounds has the highest oxidation number?

- (a) Sulphur in SO₃
- (b) Carbon in CO₂
- (c) Aluminum in AICI₃
- (d) Sulphur in CaS

Answer: (a) Sulphur in SO_3 will have the highest oxidation number.

Explanation: To understand it better, foremost we will calculate the oxidation number of SO_3 , CO_2 , AlCl₃ and CaS.

The oxidation number of sulphur in SO₃ is x + 3 X (-2) = 0 x - 6 = 0x = 6

The oxidation number of carbon in CO_2 is x + 2 X (- 2) = 0 x - 4 = 0 x = 4

The oxidation number of aluminum in $AICI_3$ is x + 3 X (- 1) = 0 x - 3 = 0 x = 3

The oxidation number of sulphur in CaS is 2 + x = 0

```
x = - 2
```

Thus, the oxidation number of sulphur in SO_3 is highest. So, option (a) is correct.

Q12. Name an element that always shows a negative oxidation number. **Answer:** Fluorine always shows a negative (-1) oxidation number.

Q13. What is the oxidation state?

Answer: The oxidation state is the number of electrons that a specific atom can gain, lose or share with another atom. It explains the degree of oxidation of an atom in a molecule.

Q14. What is the oxidation number?

Answer: The oxidation number is the charge that a central metal atom will have even after all the ligands have been removed from that atom.

Q15. What are the rules for finding oxidation numbers?

Answer: The oxidation number is the charge that a central metal atom will have even after all the ligands have been removed from that atom.

Rules for finding the oxidation number:

Rule 1: An atom has a zero oxidation number in its elemental form.

Example: The oxidation number of chlorine in the CI_2 molecule is zero.

Rule 2: The oxidation number of an ion is equivalent to its charge.

Example: The charge of chlorine ion is -1, so the oxidation number of chlorine ion will be -1.

Rule 3: The oxidation number of alkali metals is +1, and alkaline earth metal is +2.

Example: The oxidation number of sodium is +1, while the oxidation number of calcium is +2.

Rule 4: Hydrogen has two probable oxidation numbers, i.e. +1 and -1.

Example: The oxidation number of hydrogen in NaH is -1, while the oxidation number in HCl is +1. **Rule 5:** Oxygen has three probable oxidation numbers: **+2, -2 and -1.**

Example: The oxidation number of oxygen in H_2O is -2, while the oxidation number in OF_2 is +2. In contrast, the oxidation number of oxygen is -1 in H_2O_2 .

Rule 6: The oxidation number of fluorine in any compound is -1.

Example: The oxidation number of fluorine in HF is -1.

Rule 7: The oxidation number of halogen is typically equal to **-1** except when bonded with oxygen or fluorine atom.

Example: The oxidation number of chlorine in HCl is -1, while the oxidation number of chlorine in $HClO_4$ is +7.

Rule 8: The sum of the oxidation numbers of neutral compounds equals zero.

Example: The oxidation number of chlorine is -1 in HCl, while the oxidation number of hydrogen is +1, and their sum is equal to zero.

Practise Questions on Oxidation Number

Q1. Fluorine always shows a -1 oxidation number. Why?

Answer: Fluorine always shows a -1 oxidation number as it is the most electronegative element. It has seven valence electrons and gains one valence electron to complete its octet. This gives a -1 oxidation number to fluorine.

Q2. Differentiate between oxidation state and oxidation number.

S. No.	Oxidation State	Oxidation Number
1.	The oxidation state is the number of electrons that a specific atom can gain, lose or share with another atom.	The oxidation number is the charge that a central metal atom will have even after all the ligands have been removed from that atom.
2.	It can be applied to coordinate complex.	It can apply to coordinate complex and molecules.
3.	It does not tell us about the charge on the central atom.	It tells us about the charge on the central atom.

Answer:

Q3. What is the oxidation number of chlorine in the perchlorate ion?

- (a) 5
- (b) 7
- (c) 9
- (d) None of the above

Answer: (b), The oxidation number of chlorine in the perchlorate ion is 7.

Explanation: The formula of perchlorate ion is CIO4⁻.

The oxidation number of chlorine in perchlorate ion is:

x + 4 X (-2) = -1 x -8 = -1

x = 8 - 1

x = 7

So, option (b) is correct.

Q4. What is the oxidation number of carbon in carbon suboxide (C_3O_2) ?

- (a) 4/3
- (b) 2/3
- (c) 1/3
- (d) None of the above

Answer: (a), The oxidation number of carbon in carbon suboxide (C_3O_2) is 4 / 3. **Calculation:** The oxidation number of carbon in carbon suboxide (C_3O_2) will be:

3x + 2 X (-2) = 0

3x - 4 = 0

3x = 4

x = 4 / 3

Thus, the oxidation number of carbon in carbon suboxide (C_3O_2) will be 4 / 3. So, option (a) is correct.

Q5. When Chlorine gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from

- (a) Zero to -1 and Zero to +3
- (b) Zero to +1 and Zero to -3
- (c) Zero to +1 and Zero to -5
- (d) Zero to -1 and Zero to +5

Answer: (d), When Chlorine gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from Zero to -1 and Zero to +5.

Explanation: The reaction of chlorine gas with hot and concentrated sodium hydroxide solution is $3CI_2 + 6NaOH \rightarrow NaCIO_3 + 5NaCI + 3H_2O$

The oxidation number of chlorine is 0 in Cl_2 , -1 in NaCl and +5 in NaClO₃.

So the oxidation number of chlorine changes from Zero to -1 and Zero to +5. So, option (d) is correct.

