COM, Collision and Rotational dynamics

1. Three point particles of mass $1 \mathrm{~kg}, 1.5 \mathrm{~kg}$ and 2.5 kg are placed at three corners of a right triangle of sides $4.0 \mathrm{~cm}, 3.0 \mathrm{~cm}$ and 5.0 cm as shown in the figure. The centre of mass of the system is at the point:
A. 0.9 cm right and 2.0 cm above 1 kg mass
B. 2.0 cm right and 0.9 cm above 1 kg mass
C. 1.5 cm right and 1.2 cm above 1 kg mass
D. 0.6 cm right and 2.0 cm above 1 kg mass
2. In the given figure, a mass M is attached to a horizontal spring, which is fixed on one side to a rigid support. The spring constant of the spring is k. The mass oscillates on a frictionless surface with time period T and amplitude A. When the mass is in equilibrium position, as shown in the figure, another mass m is gently fixed upon it then the new amplitude of oscillation will be :

A. $A \sqrt{\frac{M}{M+m}}$
B. $A \sqrt{\frac{M}{M-m}}$
C. $A \sqrt{\frac{M-m}{M}}$
D. $A \sqrt{\frac{M+m}{M}}$

COM, Collision and Rotational dynamics

3. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Body P having mass M moving with speed u has head-on collision elastically with another body Q having mass m initially at rest. If $m \ll M$, body Q will have a maximum speed equal to $2 u$ after collision.

Reason R : During elastic collision, the momentum and kinetic energy are both conserved.

In the light of the above statements, choose the most appropriate answer from the options given below:
A. A is correct but R is not correct.
B. Both A and R are correct but R is NOT the correct explanation of A.
C. A is not correct but R is correct.
D. Both A and R are correct and R is the correct explanation of A.
4. A rubber ball is released from a height of 5 m above the floor. It bounces back repeatedly, always rising to $\frac{81}{100}$ of the height through which it falls. Find the average speed of the ball.
(Take $g=10 \mathrm{~m} \mathrm{~s}^{-2}$)
A. $2.50 \mathrm{~m} \mathrm{~s}^{-1}$
B. $3.50 \mathrm{~m} \mathrm{~s}^{-1}$
C. $3.0 \mathrm{~m} \mathrm{~s}^{-1}$
D. $2.0 \mathrm{~m} \mathrm{~s}^{-1}$

COM, Collision and Rotational dynamics

5. A mass M hangs on a massless rod of length l which rotates at a constant angular frequency. The mass M moves with steady speed in a circular path of constant radius. Assume that the system is in steady circular motion with constant angular velocity ω. The angular momentum of M about point A is L_{A} which lies in the positive z-direction and the angular momentum of M about point B is L_{B}. The correct statement for this system is :

A. $\quad L_{A}$ and L_{B} are both constant in magnitude and direction.
B. L_{B} is constant, both in magnitude and direction.
C. L_{A} is constant, both in magnitude and direction.
D. L_{A} is constant in direction with varying magnitude.

COM, Collision and Rotational dynamics

6. A triangular plate is shown in the figure. A force $\vec{F}=4 \hat{i}-3 \hat{j}$ is applied at point P. The torque acting at point P with respect to point O and point Q respectively are :

A. $15-20 \sqrt{3} ; 15+20 \sqrt{3}$
B. $15+20 \sqrt{3} ; 15-20 \sqrt{3}$
C. $-15+20 \sqrt{3} ; 15+20 \sqrt{3}$
D. $-15-20 \sqrt{3} ; 15-20 \sqrt{3}$
7. A thin circular ring of mass M and radius r is rotating about its axis with an angular speed ω. Two particles having mass m each are now attached at diametrically opposite points. The angular speed of the ring will become:
A. $\omega \frac{M}{M+2 m}$
B. $\omega \frac{M}{M+m}$
C. $\omega \frac{M+2 m}{M}$
D. $\omega \frac{M-2 m}{M+2 m}$

COM, Collision and Rotational dynamics

8. An object of mass m_{1} collides elastically with another object of mass m_{2}, which is at rest. After the collision, the objects move with equal speeds in opposite directions. The ratio of the masses, $m_{2}: m_{1}$ is -
A. $2: 1$
B. $1: 1$
C. $1: 2$
D. $3: 1$
9. A uniform sphere of mass 500 g rolls without slipping on a plane horizontal surface with its centre moving at a speed of $5.00 \mathrm{~cm} / \mathrm{s}$. Its kinetic energy is
A. $8.75 \times 10^{-4} \mathrm{~J}$
B. $8.75 \times 10^{-3} \mathrm{~J}$
C. $6.25 \times 10^{-4} \mathrm{~J}$
D. $1.13 \times 10^{-3} \mathrm{~J}$
10. A particle of mass m is dropped from a height h above the ground. At the same time another particle of the same mass is thrown vertically upwards from the ground with a speed of $\sqrt{2 g h}$. If they collide head-on completely inelastically, the time taken for the combined mass to reach the ground, in units of $\sqrt{\frac{h}{g}}$ is
A. $\sqrt{\frac{1}{2}}$
B. $\sqrt{\frac{3}{4}}$
C. $\frac{1}{2}$
D. $\sqrt{\frac{3}{2}}$

COM, Collision and Rotational dynamics

11. Mass per unit area of a circular disc of radius ' a ' depends on the distance r from its centre, as $\sigma(r)=A+B r$. The moment of inertia of the disc about the axis, perpendicular to the plane and passing through its centre, is:
A. $2 \pi a^{4}\left(\frac{A}{4}+\frac{a B}{5}\right)$
B. $2 \pi a^{4}\left(\frac{a A}{4}+\frac{B}{5}\right)$
C. $\pi a^{4}\left(\frac{A}{4}+\frac{a B}{5}\right)$
D. $2 \pi a^{4}\left(\frac{A}{4}+\frac{B}{5}\right)$
12. The coordinates of centre of mass of a uniform flag shaped lamina (thin flat plate) of mass 4 kg . (The coordinates of the same are shown in figure) are:

A. $\quad 1.25 \mathrm{~m}, 1.50 \mathrm{~m}$
B. $\quad 0.75 \mathrm{~m}, 1.75 \mathrm{~m}$
C. $\quad 0.75 \mathrm{~m}, 0.75 \mathrm{~m}$
D. $1 \mathrm{~m}, 1.75 \mathrm{~m}$

COM, Collision and Rotational dynamics

13. Consider a uniform rod of mass $M=4 m$ and length L pivoted about its centre. A mass m moving with a velocity V making an angle $\theta=\frac{\pi}{4}$ to the rod's long axis collides with one end of the rod, and sticks to it. The angular speed of the rod-mass system just after the collision is:
A. $\frac{3 V}{7 \sqrt{2} L}$
B. $\frac{3 V}{7 L}$
C. $\frac{3 \sqrt{2} V}{7 \quad L}$
D. $\frac{4 V}{7 L}$
14. Three solid spheres each of mass m and diameter d are stuck together such that the lines connecting the centres form an equilateral triangle of side of length d. The ratio $\frac{I_{0}}{I_{A}}$ of moment of inertia I_{0} of the system about an axis passing the centroid and about centre of any of the spheres I_{A} and perpendicular to the plane of the triangle, is:

A. $\frac{13}{23}$
B. $\frac{15}{13}$
C. $\frac{23}{13}$
D. $\frac{13}{15}$

COM, Collision and Rotational dynamics

15. A uniformly thick wheel, with moment of inertia I and radius R, is free to rotate about its centre of mass (see fig.). A massless string is wrapped over its rim and two blocks of masses m_{1} and $m_{2}>m_{2}$ are attached to the ends of the string. The system is released from rest. The angular speed of the wheel, when m_{1} descents through a distance h, is

A. $\left[\frac{2\left(m_{1}-m_{2}\right) g h}{\left(m_{1}+m_{2}\right) R^{2}+I}\right]^{1 / 2}$
B. $\left[\frac{2\left(m_{1}+m_{2}\right) g h}{\left(m_{1}+m_{2}\right) R^{2}+I}\right]^{1 / 2}$
C. $\left[\frac{\left(m_{1}-m_{2}\right)}{\left(m_{1}+m_{2}\right) R^{2}+I}\right]^{1 / 2} g h$
D. $\left[\frac{\left(m_{1}+m_{2}\right)}{\left(m_{1}+m_{2}\right) R^{2}+I}\right]^{1 / 2} g h$

COM, Collision and Rotational dynamics

16.

Shown in the figure is a rigid and uniform one meter long rod $A B$ held in horizontal position by two strings tied to its ends and attached to the ceiling. The rod is of mass m and has another weight of mass $2 m$ hung at a distance of 75 cm from A. The tension in the string at A is :
A. 0.5 mg
B. $2 m g$
C. 0.75 mg
D. $1 m g$
17. A uniform cylinder of mass M and radius R is to be pulled over a step of height $a(a<R)$ by applying a force F at its centre O perpendicular to the plane through the axes of the cylinder on the edge of the step (see figure). The minimum value of F required is :

A. $M g \sqrt{1-\left(\frac{R-a}{R}\right)^{2}}$
B. $M g \sqrt{\left(\frac{R}{R-a}\right)^{2}-1}$
C. $M g \frac{a}{R}$
D. $M g \sqrt{1-\frac{a^{2}}{R^{2}}}$

COM, Collision and Rotational dynamics

18. Moment of inertia of a cylinder of mass M, length L and radius R about an axis passing through its centre and perpendicular to the axis of the cylinder is $I=M\left(\frac{R^{2}}{4}+\frac{L^{2}}{12}\right)$. If such a cylinder to be made for a given mass of a material, the ratio $\frac{L}{R}$ for it to have minimum possible I is-
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\sqrt{\frac{3}{2}}$
D. $\sqrt{\frac{2}{3}}$
19. A uniform rectangular thin sheet ABCD of mass M has length a and breadth b, as shown in the figure. If the shaded portion HBGO is cut-off, the coordinates of the centre of mass of the remaining portion will be:

A. $\left(\frac{3 a}{4}, \frac{3 b}{4}\right)$
B. $\left(\frac{5 a}{3}, \frac{5 b}{3}\right)$
C. $\left(\frac{2 a}{3}, \frac{2 b}{3}\right)$
D. $\left(\frac{5 a}{12}, \frac{5 b}{12}\right)$

COM, Collision and Rotational dynamics

20. Two particles, of masses M and $2 M$, moving, as shown, with speeds of $10 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$, collide elastically at the origin. After the collision, they move along the indicated directions with speeds v_{1} and v_{2}, respectively. The values of v_{1} and v_{2} are nearly

A. $\quad 6.5 \mathrm{~m} / \mathrm{s}$ and $6.3 \mathrm{~m} / \mathrm{s}$
B. $3.2 \mathrm{~m} / \mathrm{s}$ and $6.3 \mathrm{~m} / \mathrm{s}$
C. $\quad 6.5 \mathrm{~m} / \mathrm{s}$ and $3.2 \mathrm{~m} / \mathrm{s}$
D. $3.2 \mathrm{~m} / \mathrm{s}$ and $12.6 \mathrm{~m} / \mathrm{s}$
21. A piece of wood of mass 0.03 kg is dropped from the top of a 100 m height building. At the same time, a bullet of mass 0.02 kg is fired vertically upward, with a velocity $100 \mathrm{~ms}^{-1}$, from the ground. The bullet gets embedded in the wood. Then the maximum height to which the combined system reaches above the top of the building before falling below is: $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. 20 m
B. 30 m
C. 40 m
D. 10 m

COM, Collision and Rotational dynamics

22. Three particles of masses $50 \mathrm{~g}, 100 \mathrm{~g}$ and 150 g are placed at the vertices of an equilateral triangle of side 1 m (asshown in the figure). The (x, y) coordinates of the centre of mass will be :

A. $\left(\frac{\sqrt{3}}{4} \mathrm{~m}, \frac{5}{12} \mathrm{~m}\right)$
B. $\left(\frac{7}{12} \mathrm{~m}, \frac{\sqrt{3}}{8} \mathrm{~m}\right)$
C. $\left(\frac{7}{12} \mathrm{~m}, \frac{\sqrt{3}}{4} \mathrm{~m}\right)$
D. $\left(\frac{\sqrt{3}}{8} \mathrm{~m}, \frac{7}{12} \mathrm{~m}\right)$
23. A uniform thin rod $A B$ of length L has linear mass
density $\mu(x)=a+\frac{b x}{L}$, where x is measured from A. If the $C M$ of the rod lies at a distance of $\left(\frac{7}{12}\right) L$ from A, then a and b are related as :
A. $a=2 b$
B. $2 a=b$
C. $a=b$
D. $3 a=2 b$

COM, Collision and Rotational dynamics

24. A boy of mass 20 kg is standing on a 80 kg free to move long cart. There is negligible friction between cart and ground. Initially, the boy is standing 25 m from a wall. If he walks 10 m on the cart towards the wall, then the final distance of the boy from the wall will be
A. 15 m
B. 12.5 m
C. $\quad 15.5 \mathrm{~m}$
D. 17 m

COM, Collision and Rotational dynamics

25. A thin rod of length ' L^{\prime} ' is lying along the x -axis with its ends at $x=0$ and $x=L$. Its linear density $\left(\frac{\text { mass }}{\text { length }}\right)$
varies with x as $k\left(\frac{x}{L}\right)^{n}$, where n can be zero or any positive number. If the position $x_{c m}$ of the center of mass of the rod is plotted against ' n ' which of the following graphs best approximates the dependence of $x_{c m}$ on n ?
A.

B.

C.

D.

COM, Collision and Rotational dynamics

26. A circular disc of radius R is removed from a bigger circular disc of radius $2 R$ such that the circumferences of the discs coincide. The center of mass of the new disc is $\frac{\alpha}{R}$ from the center of the bigger disc. The value of α is
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{6}$
27. A bullet of 4 g mass is fired from a gun of mass 4 kg . If the bullet moves with the muzzle speed of $50 \mathrm{~ms}^{-1}$, the impulse imparted to the gun and velocity of recoil of gun are :
A. $\quad 0.4 \mathrm{~kg} \mathrm{~ms}^{-1}, 0.1 \mathrm{~ms}^{-1}$
B. $0.2 \mathrm{~kg} \mathrm{~ms}^{-1}, 0.05 \mathrm{~ms}^{-1}$
C. $0.2 \mathrm{~kg} \mathrm{~ms}^{-1}, 0.1 \mathrm{~ms}^{-1}$
D. $0.4 \mathrm{~kg} \mathrm{~ms}^{-1}, 0.05 \mathrm{~ms}^{-1}$
28. A body rolls down an inclined plane without slipping. The kinetic energy of rotation is 50% of its translational kinetic energy. The body is :
A. Solid sphere
B. Solid cylinder
C. Hollow cylinder
D. Ring

COM, Collision and Rotational dynamics

29. The moment of inertia of a square plate of side l about the axis passing through one of the corner and perpendicular to the plane of the square plate is given by:
A. $\frac{M l^{2}}{12}$
B. $\frac{2}{3} M l^{2}$
C. $\frac{M l^{2}}{6}$
D. $M l^{2}$
30. Two discs have moments of inertia I_{1} and I_{2} about their respective axes perpendicular to the plane and passing through the center. They are rotating with angular speeds, ω_{1} and ω_{2} respectively and are brought into contact face to face with their axes of rotation coaxial. The loss in kinetic energy of the system in the process is given by :
A. $\frac{I_{1} I_{2}}{2\left(I_{1}+I_{2}\right)}\left(\omega_{1}-\omega_{2}\right)^{2}$
B. $\frac{I_{1} I_{2}}{\left(I_{1}+I_{2}\right)}\left(\omega_{1}-\omega_{2}\right)^{2}$
C. $\frac{\left(\omega_{1}-\omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}$
D. $\frac{\left(I_{1}+I_{2}\right)^{2} \omega_{1} \omega_{2}}{2\left(I_{1}+I_{2}\right)}$
