

- A. 0.9 cm right and 2.0 cm above 1 kg mass
- B. 2.0 cm right and 0.9 cm above 1 kg mass
- C. 1.5 cm right and 1.2 cm above 1 kg mass
- D. 0.6 cm right and 2.0 cm above 1 kg mass
- 2. In the given figure, a mass M is attached to a horizontal spring, which is fixed on one side to a rigid support. The spring constant of the spring is k. The mass oscillates on a frictionless surface with time period T and amplitude A. When the mass is in equilibrium position, as shown in the figure, another mass m is gently fixed upon it then the new amplitude of oscillation will be :



A. 
$$A\sqrt{\frac{M}{M+m}}$$
  
B.  $A\sqrt{\frac{M}{M-m}}$   
C.  $A\sqrt{\frac{M-m}{M}}$   
D.  $A\sqrt{\frac{M+m}{M}}$ 



3. Given below are two statements : one is labelled as Assertion *A* and the other is labelled as Reason *R*.

Assertion *A*: Body *P* having mass *M* moving with speed *u* has head-on collision elastically with another body *Q* having mass *m* initially at rest. If  $m \ll M$ , body *Q* will have a maximum speed equal to 2u after collision.

Reason R: During elastic collision, the momentum and kinetic energy are both conserved.

In the light of the above statements, choose the most appropriate answer from the options given below:

- **A.** *A* is correct but R is not correct.
- **B.** Both A and R are correct but R is NOT the correct explanation of A.
- **C.** A is not correct but R is correct.
- **D.** Both *A* and *R* are correct and *R* is the correct explanation of *A*.
- 4. A rubber ball is released from a height of 5 m above the floor. It bounces back repeatedly, always rising to  $\frac{81}{100}$  of the height through which it falls. Find the average speed of the ball.

(Take  $g=10~{
m m~s^{-2}})$ 

- **A.**  $2.50 \text{ m s}^{-1}$
- B.  $3.50 \text{ m s}^{-1}$
- C.  $3.0 \text{ m s}^{-1}$
- **D.**  $2.0 \text{ m s}^{-1}$

5. A mass M hangs on a massless rod of length l which rotates at a constant angular frequency. The mass M moves with steady speed in a circular path of constant radius. Assume that the system is in steady circular motion with constant angular velocity  $\omega$ . The angular momentum of M about point A is  $L_A$  which lies in the positive z-direction and the angular momentum of Mabout point B is  $L_B$ . The correct statement for this system is :



- **A.**  $L_A$  and  $L_B$  are both constant in magnitude and direction.
- **B.**  $L_B$  is constant, both in magnitude and direction.
- **C.**  $L_A$  is constant, both in magnitude and direction.
- **D.**  $L_A$  is constant in direction with varying magnitude.

6. A triangular plate is shown in the figure. A force  $\overrightarrow{F} = 4\hat{i} - 3\hat{j}$  is applied at point *P*. The torque acting at point P with respect to point O and point Q respectively are :



7. A thin circular ring of mass M and radius r is rotating about its axis with an angular speed  $\omega$ . Two particles having mass m each are now attached at diametrically opposite points. The angular speed of the ring will become:

A. 
$$\omega \frac{M}{M+2m}$$
  
B.  $\omega \frac{M}{M+m}$   
C.  $\omega \frac{M+2m}{M}$   
D.  $\omega \frac{M-2m}{M+2m}$ 

Copyright © Think and Learn Pvt. Ltd.

- 8. An object of mass  $m_1$  collides elastically with another object of mass  $m_2$ , which is at rest. After the collision, the objects move with equal speeds in opposite directions. The ratio of the masses,  $m_2 : m_1$  is -
  - A. 2:1
    B. 1:1
    C. 1:2
  - **D.** 3:1
- 9. A uniform sphere of mass 500 g rolls without slipping on a plane horizontal surface with its centre moving at a speed of 5.00 cm/s. Its kinetic energy is
  - A.  $8.75 \times 10^{-4} \text{ J}$
  - **B.**  $8.75 \times 10^{-3} \text{ J}$
  - C.  $6.25 \times 10^{-4} \text{ J}$
  - D.  $1.13 \times 10^{-3} \text{ J}$
- 10. A particle of mass *m* is dropped from a height *h* above the ground. At the same time another particle of the same mass is thrown vertically upwards from the ground with a speed of  $\sqrt{2 gh}$ . If they collide head-on completely inelastically, the time taken for the combined mass to reach the ground, in units of  $\sqrt{\frac{h}{a}}$  is

**A.** 
$$\sqrt{\frac{1}{2}}$$
  
**B.**  $\sqrt{\frac{3}{4}}$   
**C.**  $\frac{1}{2}$   
**D.**  $\sqrt{\frac{3}{2}}$ 

11. Mass per unit area of a circular disc of radius 'a' depends on the distance r from its centre, as  $\sigma(r) = A + Br$ . The moment of inertia of the disc about the axis, perpendicular to the plane and passing through its centre, is:

A. 
$$2\pi a^4 \left(\frac{A}{4} + \frac{aB}{5}\right)$$
  
B.  $2\pi a^4 \left(\frac{aA}{4} + \frac{B}{5}\right)$   
C.  $\pi a^4 \left(\frac{A}{4} + \frac{aB}{5}\right)$   
D.  $2\pi a^4 \left(\frac{A}{4} + \frac{B}{5}\right)$ 

12. The coordinates of centre of mass of a uniform flag shaped lamina (thin flat plate) of mass 4 kg. (The coordinates of the same are shown in figure) are:



13. Consider a uniform rod of mass M = 4m and length *L* pivoted about its centre. A mass *m* moving with a velocity *V* making an angle  $\theta = \frac{\pi}{4}$  to the rod's long axis collides with one end of the rod, and sticks to it. The angular speed of the rod-mass system just after the collision is:

A. 
$$\frac{3 V}{7\sqrt{2} L}$$
  
B. 
$$\frac{3V}{7 L}$$
  
C. 
$$\frac{3\sqrt{2} V}{7 L}$$
  
D. 
$$\frac{4 V}{7 L}$$

14. Three solid spheres each of mass m and diameter d are stuck together such that the lines connecting the centres form an equilateral triangle of side of length d. The ratio  $\frac{I_0}{I_A}$  of moment of inertia  $I_0$  of the system about an axis passing the centroid and about centre of any of the spheres  $I_A$  and perpendicular to the plane of the triangle, is:



IBYJU

15. A uniformly thick wheel, with moment of inertia *I* and radius *R*, is free to rotate about its centre of mass (see fig.). A massless string is wrapped over its rim and two blocks of masses  $m_1$  and  $m_2 > m_2$  are attached to the ends of the string. The system is released from rest. The angular speed of the wheel, when  $m_1$  descents through a distance *h*, is



A. 
$$\left[\frac{2(m_1 - m_2)gh}{(m_1 + m_2)R^2 + I}\right]^{1/2}$$
B. 
$$\left[\frac{2(m_1 + m_2)gh}{(m_1 + m_2)R^2 + I}\right]^{1/2}$$
C. 
$$\left[\frac{(m_1 - m_2)}{(m_1 + m_2)R^2 + I}\right]^{1/2}gh$$
D. 
$$\left[\frac{(m_1 + m_2)}{(m_1 + m_2)R^2 + I}\right]^{1/2}gh$$



Shown in the figure is a rigid and uniform one meter long rod AB held in horizontal position by two strings tied to its ends and attached to the ceiling. The rod is of mass m and has another weight of mass 2m hung at a distance of 75 cm from A. The tension in the string at A is :

- **A.** 0.5mg
- **B.** 2mg
- **C.** 0.75mg
- **D.** 1mg
- 17. A uniform cylinder of mass M and radius R is to be pulled over a step of height  $a \ (a < R)$  by applying a force F at its centre O perpendicular to the plane through the axes of the cylinder on the edge of the step (see figure). The minimum value of F required is :

A. 
$$Mg\sqrt{1-\left(\frac{R-a}{R}\right)^2}$$
  
B.  $Mg\sqrt{\left(\frac{R}{R-a}\right)^2-1}$   
C.  $Mg\frac{a}{R}$ 

D. 
$$Mg\sqrt{1-rac{a^2}{R^2}}$$

18. Moment of inertia of a cylinder of mass M, length L and radius R about an axis passing through its centre and perpendicular to the axis of the cylinder is  $I = M\left(\frac{R^2}{4} + \frac{L^2}{12}\right)$ . If such a cylinder to be made for a given mass of a material, the ratio  $\frac{L}{R}$  for it to have minimum possible I is-



19. A uniform rectangular thin sheet ABCD of mass M has length a and breadth b, as shown in the figure. If the shaded portion HBGO is cut-off, the coordinates of the centre of mass of the remaining portion will be:



20. Two particles, of masses M and 2M, moving, as shown, with speeds of 10 m/s and 5 m/s, collide elastically at the origin. After the collision, they move along the indicated directions with speeds  $v_1$  and  $v_2$ , respectively. The values of  $v_1$  and  $v_2$  are nearly



- **A.** 6.5 m/s and 6.3 m/s
- **B.** 3.2 m/s and 6.3 m/s
- C. 6.5 m/s and 3.2 m/s
- **D.** 3.2 m/s and 12.6 m/s
- 21. A piece of wood of mass 0.03 kg is dropped from the top of a 100 m height building. At the same time, a bullet of mass 0.02 kg is fired vertically upward, with a velocity  $100 \text{ ms}^{-1}$ , from the ground. The bullet gets embedded in the wood. Then the maximum height to which the combined system reaches above the top of the building before falling below is:  $(q = 10 \text{ ms}^{-2})$ 
  - **A.** <sub>20 m</sub>
  - **B.** <sub>30 m</sub>
  - **C.** 40 m
  - **D.** 10 m

22. Three particles of masses 50 g, 100 g and 150 g are placed at the vertices of an equilateral triangle of side 1 m (asshown in the figure). The (x, y) coordinates of the centre of mass will be :

$$Y \qquad m_{3} = 150 \text{ g}$$

$$m_{1} = 50 \text{ g} \qquad 60^{\circ} \qquad m_{2} = 100 \text{ g}$$

$$M_{1} = 50 \text{ g} \qquad 0.5 \text{ m} \ 1 \text{ m} \qquad X$$

$$A. \quad \left(\frac{\sqrt{3}}{4}\text{ m}, \frac{5}{12}\text{ m}\right)$$

$$B. \quad \left(\frac{7}{12}\text{ m}, \frac{\sqrt{3}}{8}\text{ m}\right)$$

$$C. \quad \left(\frac{7}{12}\text{ m}, \frac{\sqrt{3}}{4}\text{ m}\right)$$

$$D. \quad \left(\frac{\sqrt{3}}{8}\text{ m}, \frac{7}{12}\text{ m}\right)$$

- 23. A uniform thin rod *AB* of length *L* has linear mass density  $\mu(x) = a + \frac{bx}{L}$ , where *x* is measured from *A*. If the *CM* of the rod lies at a distance of  $\left(\frac{7}{12}\right)L$  from *A*, then *a* and *b* are related as :
  - **A.** a = 2b
  - **B.** 2a = b
  - C. a = b
  - **D.** 3a = 2b

BY.

24. A boy of mass 20 kg is standing on a 80 kg free to move long cart. There is negligible friction between cart and ground. Initially, the boy is standing 25 m from a wall. If he walks 10 m on the cart towards the wall, then the final distance of the boy from the wall will be

A. 15 m

**B.** 12.5 m

**C.** 15.5 m

**D.** 17 m

BY.

25. A thin rod of length 'L' is lying along the x-axis with its ends at x = 0 and x = L. Its linear density  $\left(\frac{\text{mass}}{\text{length}}\right)$  varies with x as  $k\left(\frac{x}{L}\right)^n$ , where n can be zero or any positive number. If the position  $x_{cm}$  of the center of mass of the rod is plotted against 'n' which of the following graphs best approximates the dependence of  $x_{cm}$  on n?



- 26. A circular disc of radius *R* is removed from a bigger circular disc of radius 2R such that the circumferences of the discs coincide. The center of mass of the new disc is  $\frac{\alpha}{R}$  from the center of the bigger disc. The value of  $\alpha$  is
  - **A.**  $\frac{1}{4}$  **B.**  $\frac{1}{3}$  **C.**  $\frac{1}{2}$ **D.**  $\frac{1}{6}$
- 27. A bullet of 4 g mass is fired from a gun of mass 4 kg. If the bullet moves with the muzzle speed of  $50 \text{ ms}^{-1}$ , the impulse imparted to the gun and velocity of recoil of gun are :
  - **A.**  $0.4 \text{ kg ms}^{-1}, 0.1 \text{ ms}^{-1}$
  - **B.**  $0.2 \text{ kg ms}^{-1}, 0.05 \text{ ms}^{-1}$
  - C.  $0.2 \text{ kg ms}^{-1}, 0.1 \text{ ms}^{-1}$
  - **D.**  $0.4 \text{ kg ms}^{-1}, 0.05 \text{ ms}^{-1}$
- 28. A body rolls down an inclined plane without slipping. The kinetic energy of rotation is 50% of its translational kinetic energy. The body is :
  - A. Solid sphere
  - B. Solid cylinder
  - **C.** Hollow cylinder
  - D. Ring

ΒY.

29. The moment of inertia of a square plate of side *l* about the axis passing through one of the corner and perpendicular to the plane of the square plate is given by:

**A.** 
$$\frac{Ml^2}{12}$$
  
**B.**  $\frac{2}{3}Ml^2$   
**C.**  $\frac{Ml^2}{6}$   
**D.**  $Ml^2$ 

30. Two discs have moments of inertia  $I_1$  and  $I_2$  about their respective axes perpendicular to the plane and passing through the center. They are rotating with angular speeds,  $\omega_1$  and  $\omega_2$  respectively and are brought into contact face to face with their axes of rotation coaxial. The loss in kinetic energy of the system in the process is given by :

A. 
$$\frac{I_1I_2}{2(I_1+I_2)}(\omega_1-\omega_2)^2$$
  
B. 
$$\frac{I_1I_2}{(I_1+I_2)}(\omega_1-\omega_2)^2$$
  
C. 
$$\frac{(\omega_1-\omega_2)^2}{2(I_1+I_2)}$$
  
D. 
$$\frac{(I_1+I_2)^2\omega_1\omega_2}{2(I_1+I_2)}$$