COM, Collision and Rotational dynamics

1. Three point particles of mass $1 \mathrm{~kg}, 1.5 \mathrm{~kg}$ and 2.5 kg are placed at three corners of a right triangle of sides $4.0 \mathrm{~cm}, 3.0 \mathrm{~cm}$ and 5.0 cm as shown in the figure. The centre of mass of the system is at the point:
A. 0.9 cm right and 2.0 cm above 1 kg mass

X B. 2.0 cm right and 0.9 cm above 1 kg mass
C. $\quad 1.5 \mathrm{~cm}$ right and 1.2 cm above 1 kg mass

X D. 0.6 cm right and 2.0 cm above 1 kg mass

Taking 1 kg as the origin

$$
\begin{aligned}
& x_{c o m}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}} \\
& x_{c o m}=\frac{1 \times 0+1.5 \times 3+2.5 \times 0}{5} \\
& x_{c o m}=0.9 \\
& y_{c o m}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}} \\
& y_{c o m}=\frac{1 \times 0+1.5 \times 0+2.5 \times 4}{5} \\
& y_{c o m}=2
\end{aligned}
$$

Centre of mass is at $(0.9,2)$

COM, Collision and Rotational dynamics

2. In the given figure, a mass M is attached to a horizontal spring, which is fixed on one side to a rigid support. The spring constant of the spring is k. The mass oscillates on a frictionless surface with time period T and amplitude A. When the mass is in equilibrium position, as shown in the figure, another mass m is gently fixed upon it then the new amplitude of oscillation will be :

A. $A \sqrt{\frac{M}{M+m}}$
x
B. $A \sqrt{\frac{M}{M-m}}$
x
C. $A \sqrt{\frac{M-m}{M}}$
© D. $A \sqrt{\frac{M+m}{M}}$
Before placing the mass m, angular frequency,
$\omega_{i}=\sqrt{\frac{k}{M}}$
After placing the mass m, angular frequency,
$\omega_{f}=\sqrt{\frac{k}{M+m}}$
As there is no impulsive force, so, linear momentum will remain conserved.
$\therefore p_{i}=p_{f}$
$\Rightarrow M \omega_{i} A_{i}=(M+m) \omega_{f} A_{f}$
$\Rightarrow M \times \sqrt{\frac{k}{M}} \times A=(M+m) \times \sqrt{\frac{k}{M+m}} \times A_{f}$
$\Rightarrow A_{f}=A \sqrt{\frac{M}{M+m}}$

COM, Collision and Rotational dynamics

3. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Body P having mass M moving with speed u has head-on collision elastically with another body Q having mass m initially at rest. If $m \ll M$, body Q will have a maximum speed equal to $2 u$ after collision.

Reason R : During elastic collision, the momentum and kinetic energy are both conserved.

In the light of the above statements, choose the most appropriate answer from the options given below:

X A. A is correct but R is not correct.
x
B. Both A and R are correct but R is NOT the correct explanation of A.
\times
C. A is not correct but R is correct.
(
D. Both A and R are correct and R is the correct explanation of A.

$e=\frac{v_{2}-v_{1}}{u_{1}-u_{2}}$
[Newton's Law of Restitution]
For elastatic collision, $e=1$
$1=\frac{v_{2}-u}{u-0}$
$u=v_{2}-u$
$v_{2}=2 u$
In elastic collision kinetic energy \& momentum are conserved.
Hence, option (d) is the correct answer.

COM, Collision and Rotational dynamics

4. A rubber ball is released from a height of 5 m above the floor. It bounces back repeatedly, always rising to $\frac{81}{100}$ of the height through which it falls. Find the average speed of the ball.
(Take $g=10 \mathrm{~m} \mathrm{~s}^{-2}$)
A. $\quad 2.50 \mathrm{~m} \mathrm{~s}^{-1}$
x
B. $3.50 \mathrm{~m} \mathrm{~s}^{-1}$
x
C. $\quad 3.0 \mathrm{~m} \mathrm{~s}^{-1}$
\times
D. $\quad 2.0 \mathrm{~m} \mathrm{~s}^{-1}$

Let the situation of the ball be as shown in the below figure.

Total distance:
$d=h+2 e^{2} h+2 e^{4} h+2 e^{6} h+2 e^{8} h+\ldots$.
$d=h+2 e^{2} h\left(1+e^{2}+e^{4}+e^{6}+\ldots\right)$
$d=h+2 e^{2} h\left(\frac{1}{1-e^{2}}\right)$
$d=\frac{\left(1-e^{2}\right) h+2 e^{2} h}{1-e^{2}}=\frac{h\left(1+e^{2}\right)}{1-e^{2}}$
Total time: $t=T+2 e T+2 e^{2} T+2 e^{3} T+\ldots$ Where $T=\sqrt{\frac{2 h}{g}}=1$
$t=T+2 e T\left(1+e+e^{2}+e^{3}+\ldots\right)$
$t=T+2 e T\left(\frac{1}{1-e}\right)$
$t=\frac{T(1+e)}{1-e}$
Now, average speed of the ball
$V_{\text {avg }}=\frac{d}{t}=\frac{h \frac{\left(1+e^{2}\right)}{\left(1-e^{2}\right)}}{T\left(\frac{1+e}{1-e}\right)}$

$$
\begin{aligned}
& V_{\text {avg }}=\frac{5}{1}\left(\frac{1+e^{2}(1-e)}{(1+e)(1-e)(1+e)}\right) \\
& V_{\text {avg }}=\frac{5\left(1+e^{2}\right)}{(1+e)^{2}} \\
& \because h^{\prime}=e^{2} h
\end{aligned}
$$

From the question: $\frac{81}{100}=e^{2}$

$$
e=\frac{9}{10}=0.9
$$

$$
V_{\text {avg }}=\frac{5\left(1+\frac{81}{100}\right)}{(1+0.9)^{2}}
$$

$$
V_{\text {avg }}=2.50 \mathrm{~m} / \mathrm{s}
$$

COM, Collision and Rotational dynamics

5. A mass M hangs on a massless rod of length l which rotates at a constant angular frequency. The mass M moves with steady speed in a circular path of constant radius. Assume that the system is in steady circular motion with constant angular velocity ω. The angular momentum of M about point A is L_{A} which lies in the positive z-direction and the angular momentum of M about point B is L_{B}. The correct statement for this system is :

x A. L_{A} and L_{B} are both constant in magnitude and direction.
X B. L_{B} is constant, both in magnitude and direction.
C. L_{A} is constant, both in magnitude and direction.
x
D. L_{A} is constant in direction with varying magnitude.

About point A :

Angular momentum is given by,

COM, Collision and Rotational dynamics

So,
$L_{A}=M v r \sin \theta=M v r \sin 90^{\circ}=M v r$
Speed v is constant as ω and r are constant, $\because v=\omega r$.
Also, mass M is constant.
Therefore, L_{A} is constant in magnitude.
The direction of velocity \vec{v} is always tangential to the path.
$\vec{r} \times \vec{v}$ points in vertically upwards direction.
So, the direction of $\overrightarrow{L_{A}}$ about A is also constant.
Hence, L_{A} is constant, both in magnitude and direction.
About point B :

Here, $L_{B}=M v l \sin \theta$
The angle between \vec{l} and \vec{v} is always 90°, so the magnitude is constant.
However, the direction of $\overrightarrow{L_{B}}$ changes continuously as the mass rotate.
Hence, option (C) is the correct answer.
6. A triangular plate is shown in the figure. A force $\vec{F}=4 \hat{i}-3 \hat{j}$ is applied at point P. The torque acting at point P with respect to point O and point Q respectively are :

X A. $15-20 \sqrt{3} ; 15+20 \sqrt{3}$
\times
B. $15+20 \sqrt{3} ; 15-20 \sqrt{3}$
x C. $-15+20 \sqrt{3} ; 15+20 \sqrt{3}$
(D) $-15-20 \sqrt{3} ; 15-20 \sqrt{3}$

Given,
$\vec{F}=4 \hat{i}-3 \hat{j}$
Position vector of \vec{F} about point O ,
$\overrightarrow{r_{1}}=10 \cos 60^{\circ} \hat{i}+10 \sin 60^{\circ} \hat{j}$
$\Rightarrow \overrightarrow{r_{1}}=5 \hat{i}+5 \sqrt{3} \hat{j}$
Now, torque,
$\overrightarrow{\tau_{1}}=\overrightarrow{r_{1}} \times \vec{F}$
$\Rightarrow \overrightarrow{\tau_{1}}=(5 \hat{i}+5 \sqrt{3} \hat{j}) \times(4 \hat{i}-3 \hat{j})$
$\Rightarrow \overrightarrow{\tau_{1}}=(-15-20 \sqrt{3}) \hat{k}$
Similarly, position vector of \vec{F} about point Q ,
$\overrightarrow{r_{2}}=-10 \cos 60^{\circ} \hat{i}+10 \sin 60^{\circ} \hat{j}$
$\Rightarrow \overrightarrow{r_{2}}=-5 \hat{i}+5 \sqrt{3} \hat{j}$
Now, torque,
$\overrightarrow{\tau_{2}}=\overrightarrow{r_{2}} \times \vec{F}$
$\Rightarrow \overrightarrow{\tau_{2}}=(-5 \hat{i}+5 \sqrt{3} \hat{j}) \times(4 \hat{i}-3 \hat{j})$
$\Rightarrow \overrightarrow{\tau_{2}}=(15-20 \sqrt{3}) \hat{k}$

COM, Collision and Rotational dynamics

7. A thin circular ring of mass M and radius r is rotating about its axis with an angular speed ω. Two particles having mass m each are now attached at diametrically opposite points. The angular speed of the ring will become:A. $\omega \frac{M}{M+2 m}$
x
B. $\omega \frac{M}{M+m}$
x
C. $\omega \frac{M+2 m}{M}$
x
D. $\omega \frac{M-2 m}{M+2 m}$

External torque is zero on the system. $\tau_{n e t}=0$, so angular momentum is conserved.

By angular momentum conservation:
$I_{i} \omega_{i}=I_{f} \omega_{f}$
$\left(M R^{2}\right) \omega=\left(M R^{2}+2 m R^{2}\right) \omega_{f}$
$\omega_{f}=\frac{\left(M R^{2}\right) \omega}{M R^{2}+2 m R^{2}}=\frac{M \omega}{M+2 m}$
$\omega_{f}=\frac{M \omega}{M+2 m}$

COM, Collision and Rotational dynamics

8. An object of mass m_{1} collides elastically with another object of mass m_{2}, which is at rest. After the collision, the objects move with equal speeds in opposite directions. The ratio of the masses, $m_{2}: m_{1}$ is -
x A. $2: 1$
X B. 1:1
x C. 1:2
(v)
D. $3: 1$

Before Collision
 After Collision
$p_{i}=p_{f}$
$\Rightarrow m_{1} u_{1}+m_{2}(0)=m_{1}(-v)+m_{2} v$
$\Rightarrow m_{1} u_{1}=v\left(m_{2}-m_{1}\right)$

Also, co-efficient of restitution,
$e=\frac{v_{\text {separation }}}{v_{\text {approach }}}=\frac{v-(-v)}{u_{1}}=\frac{2 v}{u_{1}}=1 \quad$ [For elastic collision]
$\Rightarrow u_{1}=2 v$
From (i) and (ii),
$m_{1}(2 v)=v\left(m_{2}-m_{1}\right)$
$\Rightarrow 2 m_{1}=m_{2}-m_{1}$
$\Rightarrow 3 m_{1}=m_{2}$
$\Rightarrow \frac{m_{2}}{m_{1}}=\frac{3}{1}=3: 1$

COM, Collision and Rotational dynamics

9. A uniform sphere of mass 500 g rolls without slipping on a plane horizontal surface with its centre moving at a speed of $5.00 \mathrm{~cm} / \mathrm{s}$. Its kinetic energy is
A. $8.75 \times 10^{-4} \mathrm{~J}$
x
B. $8.75 \times 10^{-3} \mathrm{~J}$
x C. $6.25 \times 10^{-4} \mathrm{~J}$
\times
D. $1.13 \times 10^{-3} \mathrm{~J}$
$K . E$ of the sphere $=$ translational $K . E+$ rotational K.E
$=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$
Where, $I=$ moment of inertia,
$\omega=$ Angular, velocity of rotation
$\mathrm{m}=$ mass of the sphere
$\mathrm{v}=$ linear velocity of centre of mass of sphere
\because Moment of intertia of sphere $I=\frac{2}{5} m R^{2}$
$\therefore K . E=\frac{1}{2} m v^{2}+\frac{1}{2} \times \frac{2}{5} m R^{2} \times \omega^{2}$
$\Rightarrow K . E=\frac{1}{2} m v^{2}+\frac{1}{2} \times \frac{2}{5} m R^{2} \times\left(\frac{v}{R}\right)^{2}\left(\because \omega=\frac{v}{R}\right)$
$\Rightarrow K E=\frac{1}{2}\left(\frac{2}{5} m R^{2}+m R^{2}\right)\left(\frac{v}{R}\right)^{2}$
$\Rightarrow K E=\frac{1}{2} m R^{2} \times \frac{7}{5} \times \frac{v^{2}}{R^{2}}=\frac{7}{10} \times \frac{1}{2} \times \frac{25}{10^{4}}$
$\Rightarrow K E=\frac{35}{4} \times 10^{-4} \mathrm{~J}$
$\Rightarrow K E=8.75 \times 10^{-4} \mathrm{~J}$

COM, Collision and Rotational dynamics

10. A particle of mass m is dropped from a height h above the ground. At the same time another particle of the same mass is thrown vertically upwards from the ground with a speed of $\sqrt{2 g h}$. If they collide head-on completely inelastically, the time taken for the combined mass to reach the ground, in units of $\sqrt{\frac{h}{g}}$ is
x A. $\sqrt{\frac{1}{2}}$
x B. $\sqrt{\frac{3}{4}}$
x C. $\frac{1}{2}$
(D. $\sqrt{\frac{3}{2}}$
Let S_{1} be distance travelled by particle being dropped from height h before collision
and S_{2} be distance travelled by vertically projected particle before collision Here,
$S_{1}=\frac{1}{2} g t^{2}$
$S_{2}=u t-\frac{1}{2} g t^{2}$
Given that $u=\sqrt{2 g h}$
We know that,
$S_{1}+S_{2}=h$
$\sqrt{2 g h} t=h$
$t=\sqrt{\frac{h}{2 g}}$

Velocity of dropped particle just before collision is $v_{1}=g t=\sqrt{\frac{h g}{2}}$

COM, Collision and Rotational dynamics

$v_{2}=u-g t=\sqrt{2 g h}-\sqrt{\frac{h g}{2}}$
For inelastic collission, using principle of conversation of linear momentum $m v_{1}+m v_{2}=2 m v_{f}$
$\Rightarrow v_{f}=\frac{m\left(\sqrt{2 g h}-\sqrt{\frac{g h}{2}}\right)-m \sqrt{\frac{g h}{2}}}{2 m}=0$
ie after collision combined mass as zero velocity.
Distance travelled by this combined mass after collision before reaching ground is $S_{2}=h-S_{1}=h-\frac{h}{4}=\frac{3 h}{4}$
After collison, time taken $\left(t_{1}\right)$ for combined mass to reach the ground is
$\Rightarrow \frac{3 h}{4}=\frac{1}{2} g t_{1}^{2}$
$\Rightarrow t_{1}=\sqrt{\frac{3 h}{2 g}}$

COM, Collision and Rotational dynamics

11. Mass per unit area of a circular disc of radius ' a ' depends on the distance r from its centre, as $\sigma(r)=A+B r$. The moment of inertia of the disc about the axis, perpendicular to the plane and passing through its centre, is:A. $2 \pi a^{4}\left(\frac{A}{4}+\frac{a B}{5}\right)$
x
B. $2 \pi a^{4}\left(\frac{a A}{4}+\frac{B}{5}\right)$
x
C. $\pi a^{4}\left(\frac{A}{4}+\frac{a B}{5}\right)$
x
D. $2 \pi a^{4}\left(\frac{A}{4}+\frac{B}{5}\right)$

Given, mass per unit area of circular disc, $\sigma=A+B r$

Consider a small elemental ring of thickness $d r$ at a distance r from the centre,

Area of the element $=2 \pi r d r$
Mass of the element, $d m=\sigma 2 \pi r d r$
The moment of inertia of the ring about an axis, perpendicular to the plane and passing through its centre, is given by,
$I=\int d m r^{2}=\int \sigma 2 \pi r d r . r^{2}$
$\Rightarrow I=2 \pi \int_{0}^{a}(A+B r) r^{3} d r$
$\Rightarrow I=2 \pi\left[\frac{A a^{4}}{4}+\frac{B a^{5}}{5}\right]$
$\Rightarrow I=2 \pi a^{4}\left[\frac{A}{4}+\frac{B a}{5}\right]$
Hence, option (A) is correct.

COM, Collision and Rotational dynamics

12. The coordinates of centre of mass of a uniform flag shaped lamina (thin flat plate) of mass 4 kg . (The coordinates of the same are shown in figure) are:

(A. $1.25 \mathrm{~m}, 1.50 \mathrm{~m}$
B. $\quad 0.75 \mathrm{~m}, 1.75 \mathrm{~m}$
\times
C. $\quad 0.75 \mathrm{~m}, 0.75 \mathrm{~m}$
x
D. $1 \mathrm{~m}, 1.75 \mathrm{~m}$

The given Lamina can be divided into two parts, as shown.
The mass and the position of centre of mass of these parts are given by,
$m_{1}=1, C_{1}=(1.5,2.5)$
$m_{2}=3, C_{2}=(0.5,1.5)$
$X_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$
$\Rightarrow X_{c m}=\frac{1.5+1.5}{4}=0.75$
$Y_{c m}=\frac{m_{1} y_{1}+m_{2} y_{2}}{m_{1}+m_{2}}$
$\Rightarrow Y_{c m}=\frac{2.5+4.5}{4}=1.75$
\therefore Coordinate of the centre of mass of flag shaped lamina $(0.75,1.75)$
Hence, option (B) is correct.

COM, Collision and Rotational dynamics

13. Consider a uniform rod of mass $M=4 m$ and length L pivoted about its centre. A mass m moving with a velocity V making an angle $\theta=\frac{\pi}{4}$ to the rod's long axis collides with one end of the rod, and sticks to it. The angular speed of the rod-mass system just after the collision is:
x
A. $\frac{3 \quad V}{7 \sqrt{2} L}$
x
B. $\frac{3 V}{7 L}$C. $\frac{3 \sqrt{2} V}{7 \quad L}$
\times
D. $\frac{4 V}{7 L}$

4 m

Angular momentum of the rod-mass system about point O is
$\Rightarrow L=(m g \times 0)+\frac{m V}{\sqrt{2}} \times \frac{L}{2}=\frac{m V L}{2 \sqrt{2}}$
Let, I be the moment of inertia about O of the rod-mass system, and, ω be the angular speed just after collision.
$I=\frac{4 m L^{2}}{12}+\frac{m L^{2}}{4}=\frac{7}{12} m L^{2}$
$L=I \omega$
$\Rightarrow \frac{m V L}{2 \sqrt{2}}=\frac{7}{12} m L^{2} \times \omega$
$\therefore \omega=\frac{6 V}{7 \sqrt{2} L}=\frac{3 \sqrt{2} V}{7 L}$
Hence, option (C) is correct.

COM, Collision and Rotational dynamics

14. Three solid spheres each of mass m and diameter d are stuck together such that the lines connecting the centres form an equilateral triangle of side of length d. The ratio $\frac{I_{0}}{I_{A}}$ of moment of inertia I_{0} of the system about an axis passing the centroid and about centre of any of the spheres I_{A} and perpendicular to the plane of the triangle, is:

(ح) A. $\frac{13}{23}$
(B. $\frac{15}{13}$
× C. $\frac{23}{13}$
(D. $\frac{13}{15}$

Moment of inertia of a sphere, about an axis passing through O, is,
$I_{1}=\frac{2}{5} m\left(\frac{d}{2}\right)^{2}+m(A O)^{2}$
and $A O=\frac{d}{\sqrt{3}}$
Moment of inertia of the system about O, is
$I_{0}=3 I_{1}=3\left[\frac{2}{5} m\left(\frac{d}{2}\right)^{2}+m\left(\frac{d}{\sqrt{3}}\right)^{2}\right]$
$\Rightarrow I_{0}=\frac{13}{10} m d^{2}$
Similarly, Moment of inertia of the system about A, is
$I_{A}=2\left[\frac{2}{5} m\left(\frac{d}{2}\right)^{2}+m d^{2}\right]+\frac{2}{5} m\left(\frac{d}{2}\right)^{2}$
$\Rightarrow I_{A}=\frac{23}{10} m d^{2}$
$\therefore \frac{I_{0}}{I_{A}}=\frac{\frac{13}{10} m d^{2}}{\frac{23}{10} m d^{2}}=\frac{13}{23}$
Hence, (A) is the correct answer.

COM, Collision and Rotational dynamics

15. A uniformly thick wheel, with moment of inertia I and radius R, is free to rotate about its centre of mass (see fig.). A massless string is wrapped over its rim and two blocks of masses m_{1} and $m_{2}>m_{2}$ are attached to the ends of the string. The system is released from rest. The angular speed of the wheel, when m_{1} descents through a distance h, is
A. $\left[\frac{2\left(m_{1}-m_{2}\right) g h}{\left(m_{1}+m_{2}\right) R^{2}+I}\right]^{1 / 2}$
x
B. $\left[\frac{2\left(m_{1}+m_{2}\right) g h}{\left(m_{1}+m_{2}\right) R^{2}+I}\right]^{1 / 2}$
x
C. $\left[\frac{\left(m_{1}-m_{2}\right)}{\left(m_{1}+m_{2}\right) R^{2}+I}\right]^{1 / 2} g h$
x
D. $\left[\frac{\left(m_{1}+m_{2}\right)}{\left(m_{1}+m_{2}\right) R^{2}+I}\right]^{1 / 2} g h$

COM, Collision and Rotational dynamics

Using the principal of conservation of energy,
$\left(m_{1}-m_{2}\right) g h=\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2}+\frac{1}{2} I \omega^{2}$

As, $v=\omega R$
$\Rightarrow\left(m_{1}-m_{2}\right) g h=\frac{1}{2}\left(m_{1}+m_{2}\right)\left(\omega^{2} R^{2}\right)+\frac{1}{2} I \omega^{2}$
$\Rightarrow\left(m_{1}-m_{2}\right) g h=\frac{\omega^{2}}{2}\left[\left(m_{1}+m_{2}\right) R^{2}+I\right]$
$\Rightarrow \omega=\sqrt{\frac{2\left(m_{1}-m_{2}\right) g h}{\left(m_{1}+m_{2}\right) R^{2}+I}}$
Hence, (A) is the correct answer.

COM, Collision and Rotational dynamics

16.

Shown in the figure is a rigid and uniform one meter long rod $A B$ held in horizontal position by two strings tied to its ends and attached to the ceiling. The rod is of mass m and has another weight of mass $2 m$ hung at a distance of 75 cm from A. The tension in the string at A is :
x A. $0.5 m g$

X B. $2 m g$
\times C. 0.75 mg
(D) D. $1 m g$

Net torque, $\tau_{n e t}$ about B is zero at equilibrium,

$\Rightarrow\left(T_{A} \times 100\right)-(m g \times 50)-(2 m g \times 25)=0$
$\Rightarrow T_{A} \times 100=100 \mathrm{mg}$
Therefore, Tension in the string at A
$T_{A}=1 m g$
Hence, option (D) is correct.

COM, Collision and Rotational dynamics

17. A uniform cylinder of mass M and radius R is to be pulled over a step of height $a(a<R)$ by applying a force F at its centre O perpendicular to the plane through the axes of the cylinder on the edge of the step (see figure). The minimum value of F required is :

(v)
A. $M g \sqrt{1-\left(\frac{R-a}{R}\right)^{2}}$
x B.
B. $M g \sqrt{\left(\frac{R}{R-a}\right)^{2}-1}$
× C. $M g \frac{a}{R}$
x D. $M g \sqrt{1-\frac{a^{2}}{R^{2}}}$

With respect to the point of contact on the step,
For step up,
$\tau_{F} \geq \tau_{m g}$
$\Rightarrow F \times R \geq M g \times x$
From the figure, $x=\sqrt{R^{2}-(R-a)^{2}}$
$\Rightarrow F_{\text {min }}=\frac{M g}{R} \times \sqrt{R^{2}-(R-a)^{2}}$
$\Rightarrow F_{\text {min }}=M g \sqrt{1-\left(\frac{R-a}{R}\right)^{2}}$
Hence, option (A) is correct.

COM, Collision and Rotational dynamics

18. Moment of inertia of a cylinder of mass M, length L and radius R about an axis passing through its centre and perpendicular to the axis of the cylinder is $I=M\left(\frac{R^{2}}{4}+\frac{L^{2}}{12}\right)$. If such a cylinder to be made for a given mass of a material, the ratio $\frac{L}{R}$ for it to have minimum possible I is-
x A. $\frac{2}{3}$
\times
B. $\frac{3}{2}$C. $\sqrt{\frac{3}{2}}$
$\times \quad \mathrm{D}$
D. $\sqrt{\frac{2}{3}}$

Given, $I=\frac{M R^{2}}{4}+\frac{M L^{2}}{12}$
$\because V=\pi R^{2} L \quad \Rightarrow \quad R^{2}=\frac{V}{\pi L}$
$\Rightarrow I=\frac{M}{4} \times \frac{V}{\pi L}+\frac{M L^{2}}{12}=\frac{M V}{4 \pi L}+\frac{M L^{2}}{12}$
For I to be minimum, $\frac{d I}{d L}=0$
$\frac{d I}{d L}=-\frac{M V}{4 \pi L^{2}}+\frac{M \times 2 L}{12}=0$
$\Rightarrow\left(\frac{R}{L}\right)^{2}=\frac{2}{3}$
$\therefore \frac{L}{R}=\sqrt{\frac{3}{2}}$
Hence, (C) is the correct answer.

COM, Collision and Rotational dynamics

19. A uniform rectangular thin sheet ABCD of mass M has length a and breadth b, as shown in the figure. If the shaded portion HBGO is cut-off, the coordinates of the centre of mass of the remaining portion will be:

(A. $\left(\frac{3 a}{4}, \frac{3 b}{4}\right)$
x
B. $\left(\frac{5 a}{3}, \frac{5 b}{3}\right)$
x
C. $\left(\frac{2 a}{3}, \frac{2 b}{3}\right)$
(v)
D. $\left(\frac{5 a}{12}, \frac{5 b}{12}\right)$

COM, Collision and Rotational dynamics

With respect to point O, the CM of the cut-off potion will have coordinates, $\left(\frac{a}{4}, \frac{b}{4}\right)$
\therefore With respect to point D, the CM of the cut-off potion will
have coordinates, $\left[\left(\frac{a}{2}+\frac{a}{4}\right),\left(\frac{b}{2}+\frac{b}{4}\right)\right]$
So, With respect to point D, the coordinates of CM of the cut-off portion are, $\left(\frac{3 a}{4}, \frac{3 b}{4}\right)$

Let the mass of the removed portion is m and mass per unit area of the sheet is σ.
$\Rightarrow \sigma=\frac{M}{a b}=\frac{m}{\frac{a}{2} \times \frac{b}{2}}$
$\Rightarrow m=\frac{M}{4}$
$\Rightarrow x_{\mathrm{CM}}=\frac{M X-m x}{M-m}$

$$
=\frac{M \times \frac{a}{2}-\frac{M}{4} \times \frac{3 a}{4}}{M-\frac{M}{4}}=\frac{5 a}{12}
$$

and $y_{\mathrm{CM}}=\frac{M Y-m y}{M-m}$

$$
=\frac{M \times \frac{b}{2}-\frac{M}{4} \times \frac{3 b}{4}}{M-\frac{M}{4}}=\frac{5 b}{12}
$$

So, coordinates of CM of the remaining portion are, $\frac{5 a}{12}, \frac{5 b}{12}$

Hence, (D) is the correct answer.

COM, Collision and Rotational dynamics

20. Two particles, of masses M and $2 M$, moving, as shown, with speeds of $10 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$, collide elastically at the origin. After the collision, they move along the indicated directions with speeds v_{1} and v_{2}, respectively. The values of v_{1} and v_{2} are nearly

A. $\quad 6.5 \mathrm{~m} / \mathrm{s}$ and $6.3 \mathrm{~m} / \mathrm{s}$
\times
B. $\quad 3.2 \mathrm{~m} / \mathrm{s}$ and $6.3 \mathrm{~m} / \mathrm{s}$
x
C. $\quad 6.5 \mathrm{~m} / \mathrm{s}$ and $3.2 \mathrm{~m} / \mathrm{s}$
x
D. $3.2 \mathrm{~m} / \mathrm{s}$ and $12.6 \mathrm{~m} / \mathrm{s}$

COM, Collision and Rotational dynamics

Given:
Speed of mass M particle $=10 \mathrm{~m} / \mathrm{s}$
Speed of mass $2 M$ particle $=5 \mathrm{~m} / \mathrm{s}$

Applying conservation of linear momentum in X and Y direction for the system then
$M\left(10 \cos 30^{\circ}\right)+2 M\left(5 \cos 45^{\circ}\right)=2 M\left(v_{1} \cos 30^{\circ}\right)+M\left(v_{2} \cos 45^{\circ}\right)$
$5 \sqrt{3}+5 \sqrt{2}=\sqrt{3} v_{1}+\frac{v_{2}}{\sqrt{2}}$
Also
$2 M\left(5 \sin 45^{\circ}\right)-M\left(10 \sin 30^{\circ}\right)=2 M v_{1} \sin 30^{\circ}-M v_{2} \sin 45^{\circ}$
$5 \sqrt{2}-5=v_{1}-\frac{v_{2}}{\sqrt{2}}$
Solving equation (1) and (2)
$(\sqrt{3}+1) v_{1}=5 \sqrt{3}+10 \sqrt{2}-5$
$\Rightarrow v_{1}=6.5 \mathrm{~m} / \mathrm{s}$
$\Rightarrow v_{2}=6.3 \mathrm{~m} / \mathrm{s}$
Hence option (A) is correct.

COM, Collision and Rotational dynamics

21. A piece of wood of mass 0.03 kg is dropped from the top of a 100 m height building. At the same time, a bullet of mass 0.02 kg is fired vertically upward, with a velocity $100 \mathrm{~ms}^{-1}$, from the ground. The bullet gets embedded in the wood. Then the maximum height to which the combined system reaches above the top of the building before falling below is: $\left(g=10 \mathrm{~ms}^{-2}\right)$
x A. 20 m
x B. 30 m
C. 40 m
x D. 10 m
Given:
Wooden piece of mass $=0.03 \mathrm{~kg}$
Building height $=100 \mathrm{~m}$
Bullet mass $=0.02 \mathrm{~kg}$
Initial velocity of bullet $=100 \mathrm{~ms}^{-1}$,

0.02 kg

Time taken for the particles to collide,
For wooden ball
Let h_{1} be the distance which is travelled, then using equation of motion
$h_{1}=0+\frac{1}{2} g t^{2}$
Similarly, h_{2} is the distance covered by the bullet in verticxal direction
$h_{2}=100 . t-\frac{1}{2} g t^{2}$
Since, total distance covered by both,
$h_{1}+h_{2}=100 \mathrm{~m}$
$100 t=100 \mathrm{~m} \Rightarrow t=1 \mathrm{~s}$
Speed of wood just before collision
$u_{1}=0+g \cdot t=10 \mathrm{~m} / \mathrm{s}$

COM, Collision and Rotational dynamics

and speed of bullet just before collision
$u_{2}=v-g t=100-10 \times 1=90 \mathrm{~m} / \mathrm{s}$
Distance travelled by the bullet (collision point)
$S=100 \times 1-\frac{1}{2} \times 10 \times 1=95 \mathrm{~m}$
Before
$0.03 \mathrm{~kg} \downarrow 10 \mathrm{~m} / \mathrm{s}$

0.02 kg $90 \mathrm{~m} / \mathrm{s}$ 0.05 kg

Now, using conservation of linear momentum just before and after the collision
$m_{1} u_{1}+m_{2} U_{2}=\left(m_{1}+m_{2}\right) v$
$-(0.03)(10)+(0.02)(90)=(0.05) v$
$\Rightarrow 150=5 v$
$\therefore v=30 \mathrm{~m} / \mathrm{s}$
Max. height reached by body,
$v^{2}=u^{2}-2 g h$
$\Rightarrow h=\frac{v^{2}}{2 g}=\frac{30 \times 30}{2 \times 10}=45 \mathrm{~m}$
\therefore Height above tower $45-5=40 \mathrm{~m}$
Hence, option (C) is correct.
22. Three particles of masses $50 \mathrm{~g}, 100 \mathrm{~g}$ and 150 g are placed at the vertices of an equilateral triangle of side 1 m (asshown in the figure). The (x, y) coordinates of the centre of mass will be :

(A) $\left(\frac{\sqrt{3}}{4} \mathrm{~m}, \frac{5}{12} \mathrm{~m}\right)$
x
B. $\left(\frac{7}{12} \mathrm{~m}, \frac{\sqrt{3}}{8} \mathrm{~m}\right)$C. $\left(\frac{7}{12} \mathrm{~m}, \frac{\sqrt{3}}{4} \mathrm{~m}\right)$
x
D. $\left(\frac{\sqrt{3}}{8} \mathrm{~m}, \frac{7}{12} \mathrm{~m}\right)$

Given:
masses $m_{1}=50 \mathrm{~g}$,
$m_{2}=100 \mathrm{~g}$
$m_{3}=150 \mathrm{~g}$

50 g

For the center of mass of the given system ,
Using formula
$x_{c m}=\frac{m_{1} \cdot x_{1}+m_{2} \cdot x_{2}+m_{3} \cdot x_{3}}{m_{1}+m_{2}+m_{3}}$
$=\frac{50 \times 0+100 \times 1+150 \times 0.5}{50+100+150}$
$=\frac{7}{12} \mathrm{~m}$
Similarly,
$y_{c m}=\frac{m_{1} \cdot y_{1}+m_{2} \cdot y_{2}+m_{3} \cdot y_{3}}{m_{1}+m_{2}+m_{3}}$
$=\frac{50 \times 0+100 \times 0+150 \times \frac{\sqrt{3}}{2}}{50+100+150}$
$=\frac{\sqrt{3}}{4} \mathrm{~m}$
Hence the coordinates (x, y) are $\left(\frac{7}{12} \mathrm{~m}, \frac{\sqrt{3}}{4} \mathrm{~m}\right)$
Hence, option (C) is correct.
23. A uniform thin rod $A B$ of length L has linear mass density $\mu(x)=a+\frac{b x}{L}$, where x is measured from A. If the $C M$ of the rod lies at a distance of $\left(\frac{7}{12}\right) L$ from A, then a and b are related as:
× A. $a=2 b$
(v)
B. $2 a=b$
\times
C. $a=b$
x
D. $3 a=2 b$

Centre of mass of the rod is given by:
$x_{c m}=\frac{\int_{0}^{L}\left(a x+\frac{b x^{2}}{L}\right) d x}{\int_{0}^{L}\left(a+\frac{b x}{L}\right) d x}$
$=\frac{\left(\frac{a L^{2}}{2}+\frac{b L^{2}}{3}\right)}{\left(a L+\frac{b L}{2}\right)}=L \cdot \frac{\left(\frac{a}{2}+\frac{b}{3}\right)}{\left(a+\frac{b}{2}\right)}$
$\Rightarrow \frac{7 L}{12}=L \cdot \frac{\left(\frac{a}{2}+\frac{b}{3}\right)}{\left(a+\frac{b}{2}\right)}$
$7 a+\frac{7}{2} b=6 a+4 b \Rightarrow a=4 b-\frac{7}{2} b$
$\Rightarrow b=2 a$
Hence, option (B) is correct.

COM, Collision and Rotational dynamics

24. A boy of mass 20 kg is standing on a 80 kg free to move long cart. There is negligible friction between cart and ground. Initially, the boy is standing 25 m from a wall. If he walks 10 m on the cart towards the wall, then the final distance of the boy from the wall will be
x A. 15 m
x B. 12.5 m
x C. 15.5 m
(v)
D. 17 m

Given:
Mass of boy $m_{1}=20 \mathrm{~kg}$
Mass of cart $m_{2}=80 \mathrm{~kg}$
Initial distance between boy and cart is 25 m
Distance moved by boy towards wall is 10 m
As there is no external force, so displacement of centre of mass of the (cart + boy) system parallel to the surface is zero.
$\therefore x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=0$
Let when the boy moves 10 m towards the wall, the cart moves away from the wall a distance x
So, displacement of man w.r.t. ground towards the wall is
$x_{1}=10-x$
And the displacement of cart w.r.t. ground towards the wall is $x_{2}=-x$
$20 \times(10-x)+(80 \times(-x))=0$
$\Rightarrow x=2 \mathrm{~m}$
i.e. Final distance between boy and wall, $=25-10+2=17 \mathrm{~m}$

Hence, option (D) is correct.

COM, Collision and Rotational dynamics

25. A thin rod of length ' L^{\prime} is lying along the x -axis with its ends at $x=0$ and $x=L$. Its linear density $\left(\frac{\text { mass }}{\text { length }}\right)$
varies with x as $k\left(\frac{x}{L}\right)^{n}$, where n can be zero or any positive number. If the position $x_{c m}$ of the center of mass of the rod is plotted against ' n ' which of the following graphs best approximates the dependence of $x_{c m}$ on n ?
A.

\times B.

$x \quad$ C.

\times D.

COM, Collision and Rotational dynamics

Given:
The linear mass density $\lambda=k\left(\frac{x}{L}\right)^{n}$
for varying mass,
we can write the equation for the center of mass as,
$x_{C M}=\frac{\int_{0}^{L} x d m}{\int_{0}^{L} d m}=\frac{\int_{0}^{L} x(\lambda d x)}{\int_{0}^{L} \lambda d x}=\frac{\int_{0}^{L} k\left(\frac{x}{L}\right)^{n} x d x}{\int_{0}^{L} k\left(\frac{x}{L}\right)^{n} d x}$
$=\frac{k\left[\frac{x^{n+2}}{(n+2) L^{n}}\right]_{0}^{L}}{\left[\frac{k x^{n+1}}{(n+1) L^{n}}\right]_{0}^{L}}=\frac{L(n+1)}{n+2}$
For $n=0, \quad x_{C M}=\frac{L}{2}$;
$n=1, x_{C M}=\frac{2 L}{3}$
$n=2 x_{C M}=\frac{3 L}{4} ; \ldots$.
For $n \rightarrow \infty, x_{c m}=L$
So we can observe that the Graph A satisfies the above conditions.
Hence, option (A) is correct.

COM, Collision and Rotational dynamics

26. A circular disc of radius R is removed from a bigger circular disc of radius $2 R$ such that the circumferences of the discs coincide. The center of mass of the new disc is $\frac{\alpha}{R}$ from the center of the bigger disc. The value of α is
x
A. $\frac{1}{4}$B. $\frac{1}{3}$
\times
C. $\frac{1}{2}$
\times
D. $\frac{1}{6}$

Let σ be the mass per unit area of the disc.
Then the mass of the complete disc $=\sigma\left(\pi(2 R)^{2}\right)$

The mass of the removed disc $=\sigma\left(\pi R^{2}\right)=\pi \sigma R^{2}$
Let us consider the above situation to be a complete disc of radius $2 R$ on which a disc of radius R of negative mass is superimposed.
Let O be the origin.
Then the above figure can be redrawn keeping in mind the concept of centre of mass as :

$x_{c m}=\frac{\left(6 \pi\left(2 R^{2}\right)\right) \times 0+\left(-6\left(\pi R^{2}\right)\right) R}{4 \pi \sigma R^{2}-\pi \sigma R^{2}}$
$\therefore x_{c m}=\frac{-\pi \sigma R^{2} \times R}{3 \pi \sigma R^{2}}$
$\therefore x_{c m}=-\frac{R}{3}=\alpha R \Rightarrow \alpha=\frac{1}{3}$
Hence, option (B) is correct.

COM, Collision and Rotational dynamics

27. A bullet of 4 g mass is fired from a gun of mass 4 kg . If the bullet moves with the muzzle speed of $50 \mathrm{~ms}^{-1}$, the impulse imparted to the gun and velocity of recoil of gun are :
x A. $0.4 \mathrm{~kg} \mathrm{~ms}^{-1}, 0.1 \mathrm{~ms}^{-1}$B. $0.2 \mathrm{~kg} \mathrm{~ms}^{-1}, 0.05 \mathrm{~ms}^{-1}$
\times
C. $0.2 \mathrm{~kg} \mathrm{~ms}^{-1}, 0.1 \mathrm{~ms}^{-1}$
\times
D. $0.4 \mathrm{~kg} \mathrm{~ms}^{-1}, 0.05 \mathrm{~ms}^{-1}$

4kg
By momentum conservation
$4 \times 10^{-3}(50-v)-4 v=0$
$\Rightarrow v=\frac{4 \times 10^{-3} \times 50}{4+4 \times 10^{-3}} \approx 0.05 \mathrm{~ms}^{-1}$
Impulse $J=m v=4 \times .05=0.2 \mathrm{~kg} \mathrm{~ms}^{-1}$
Hence, (B) is the correct answer.

COM, Collision and Rotational dynamics

28. A body rolls down an inclined plane without slipping. The kinetic energy of rotation is 50% of its translational kinetic energy. The body is :
x A. Solid sphere
B. Solid cylinder
\times C. Hollow cylinder
x D. Ring
Give:
$(K E)_{R}=50 \%$ of $(K E)_{T}=\frac{1}{2} \times(K E)_{T}$
$\Rightarrow \frac{1}{2} I \omega^{2}=\frac{1}{2} \times \frac{1}{2} m v^{2}$
Here, body moves without slipping, $v=R \omega$
$\therefore I=\frac{1}{2} m R^{2}$
And we know that, MOI of disc or solid cylinder is $m R^{2} / 2$.
Hence, option (B) is correct.

COM, Collision and Rotational dynamics

29. The moment of inertia of a square plate of side l about the axis passing through one of the corner and perpendicular to the plane of the square plate is given by:
x
A. $\frac{M l^{2}}{12}$
B. $\frac{2}{3} M l^{2}$
\times
C. $\frac{M l^{2}}{6}$

X D. $M l^{2}$
Moment of inertia of the square plate about an axis passing through its center of mass and perpendicular to its plane is :
$I_{\text {com }}=\frac{M l^{2}}{6}$
According to the parallel axis theorem, moment of inertia of the plate about the axis passing from the corner and perpendicular to its plane is :
$I=I_{\text {com }}+M x^{2}$
Here, the distance between this axis from com is equal to half the length of the diagonal of the square.
i.e. $x=\frac{l \sqrt{2}}{2}=\frac{l}{\sqrt{2}}$
$\Rightarrow I=\frac{M l^{2}}{6}+\frac{M l^{2}}{2}$
Or, $I=\frac{2 M l^{2}}{3}$

COM, Collision and Rotational dynamics

30. Two discs have moments of inertia I_{1} and I_{2} about their respective axes perpendicular to the plane and passing through the center. They are rotating with angular speeds, ω_{1} and ω_{2} respectively and are brought into contact face to face with their axes of rotation coaxial. The loss in kinetic energy of the system in the process is given by :A. $\frac{I_{1} I_{2}}{2\left(I_{1}+I_{2}\right)}\left(\omega_{1}-\omega_{2}\right)^{2}$
\times
B. $\frac{I_{1} I_{2}}{\left(I_{1}+I_{2}\right)}\left(\omega_{1}-\omega_{2}\right)^{2}$
x
C. $\frac{\left(\omega_{1}-\omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}$
x
D. $\frac{\left(I_{1}+I_{2}\right)^{2} \omega_{1} \omega_{2}}{2\left(I_{1}+I_{2}\right)}$

Let their final common angular velocity is ω.
From conservation of angular momentum we have :
$I_{1} \omega_{1}+I_{2} \omega_{2}=\left(I_{1}+I_{2}\right) \omega$
$\Rightarrow \omega=\frac{\left(I_{1} \omega_{1}+I_{2} \omega_{2}\right)}{\left(I_{1}+I_{2}\right)} \ldots$
Initial kinetic energy of the system :
$K E_{i}=\frac{1}{2} I_{1} \omega_{1}^{2}+\frac{1}{2} I_{2} \omega_{2}^{2}$
Final kinetic energy of the system :
$K E_{f}=\frac{1}{2}\left(I_{1}+I_{2}\right) \omega^{2}$
Loss in kinetic energy ;
$\Delta K E=K E_{i}-K E_{f}=\frac{1}{2} I_{1} \omega_{1}^{2}+\frac{1}{2} I_{2} \omega_{2}^{2}-\frac{1}{2}\left(I_{1}+I_{2}\right) \omega^{2}$
From (1) :
$\Delta K E=\frac{1}{2} I_{1} \omega_{1}^{2}+\frac{1}{2} I_{2} \omega_{2}^{2}-\frac{1\left(I_{1} \omega_{1}+I_{2} \omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}$
$\Rightarrow \Delta K E=\frac{1}{2}\left(\frac{I_{1} I_{2}}{I_{1}+I_{2}}\right)\left(\omega_{1}-\omega_{2}\right)^{2}$

