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CENTRE OF MASS

 Centre of mass :
For a system of particles, centre of mass is that point at which its total mass is supposed to
be concentrated.

 Centre of mass of system of discrete particles :
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 For a two particle system, distances of particles from centre of mass are in the reverse

ratio of the masses i.e. m1r1 = m2 r2 
1 2

2 1

r m
.

r m


 Two circular discs/sphere of the same material are kept in contact as shown, then distance

of centre of mass from the centre of the first disc is    
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centre of mass from the centre of the second disc is
   
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Centre of mass of continuous distribution of particles

CM
1

R rdm
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 
 
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Y ydm
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com

z dm 1
Z zdm
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x, y, z are the co-ordinate of the COM of the dm mass.

 The centre of mass after removal of a part of a body
Original mass (M) – mass of the removed part (m)
 = {original mass (M)} + {– mass of the removed part (m)}

When a part is removed from a rigid body. then the position of COM of the remaining
portion will be :

COM

1 2r r
r

M m
M m
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 

 The co-oradinates of COM is given by
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  Centre of mass of some common objects
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Shape Figure 𝐱ത 𝐲ത 
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CENTRE OF MASS

       

Shape  Figure 𝐱ത 𝐲ത 
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CENTRE OF MASS
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 Motion of centre of mass

For a system of particles,

velocity of centre of mass
CM 1 1 2 2 n n

CM
1 2 n

dR m v m v ... m v
v

dt m m ... m
  

 
  

   

Similarly acceleration   1 1 2 2 n n
CM CM

1 2 n

m a m a ... m ad
a v

dt m m ... m
  

 
  

   

 Analysis of Dynamics of COM

  COM
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net ext
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


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
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CENTRE OF MASS

 COM moves with acceleration     n e tF 0


 If a system is at rest intially and there is no net external force acting on it then there will

   be no shift in position of the COM of the system.

   net COM COMF 0 V 0 r 0     
  

 Law of conservation of linear momentum
Linear momentum of a system of particles is equal to the product of mass of the system

with velocity of its centre of mass.

From Newton's second law CM
ext.

d(Mv )
F

dt




If ext.F 0


, then  cmMv


 = constantt

If no external force acts on a system the velocity of its centre of mass remains constant,

i.e., velocity of centre of mass is unaffected by internal forces.

 Impulse-Momentum theorem

Impulse of a force is equal to the change of momentum.

Force-time graph area gives change in momentum. 
2

1

t

t

Fdt P 
 

 Reduced Mass For Two Body System

1. A two body system can be made equivalent to a single body system by introducing the

concept of reduced mass.

2. Let m1 and m2 be the masses of two particles with position vectors 1r


 and 2r


 and 12F


 be the

forces exerted by second body on first body and 21F


 by first body on second body

respectively.

2 2
1 2

12 1 21 22 2

d r d r
F m  and F m

dt dt
 

  

As no external force acts on the system, 12 21F F F  
  

2 2
1 2 1 2
2 2

1 2 1 2

d r d r m m1 1
 F F

dt dt m m m m
   

       
   

   
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1 2Let r r r 
  

2 2
1 2 1 2

2 2
1 2 1 2

d r m m m m d r
 F or F

dt m m m m dt
    

     
   

  

2

2

d r
or F

dt
 

 

Here 
1 2

1 2

m m
m m
 

    
 is called reduced mass.

 Classical Example of Application of COM :-

(1) The earth revolves around the sun in an elliptical orbit whereas the moon revolves round
the earth in circular orbit. Both the earth and the moon move in circles about a common
centre of mass. The internal force which act on the earth moon system are the gravitational
force of attraction on each other. The earth and the moon are always on opposite sides of
the centre of mass. Since the earth is heavier than moon, So the centre of mass of the
system is very close to the earth. It is this centre of mass which revolves around the sun in
an elliptical orbit.

 

(2) In radioactive decay, the process is caused by the internal forces of the system. Therefore,
initial and final momenta are zero. Hence, the decay products fly off in the opposite
directions. The centre of mass of the system remains at rest. The heavy mass move with
less speed than that of the light mass.

 

(3) Explosion of a projectile (e.g. fire cracker) in mid air. Let us consider a projectile which
explodes in air. Before explosion, the projectile move along a parabolic path. After explosion,

CENTRE OF MASS
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CENTRE OF MASS

each fragment move along its own parabolic path but the centre of mass of the projectile
continues to move in the same parabolic path.

Explanation. The projectile follows a parabolic path under the action of gravity (i.e. earth’s
gravitational force) Explosion of the projectile occurs due to the internal forces i.e, without
any external force. These internal forces cannot change the total momentum of the system
al though they may change the momenta of the individual fragments. Thus the centre of
mass will remain unaffected after the explosion and hence follow the same parabolic path.

(4) When a diver jumps into water form a height, then body can moves in any path but centre
of mass of his body traverses in parabolic path.

So centre of mass follow laws of motion.



 
1© 2022, BYJU’S. All rights reserved

COLLISIONS

1. Collision of bodies :
The event or the process, in which two bodies either coming in contact with each other or

due to mutual interaction at distance apart, affect each others motion (velocity, momentum,

energy or direction of motion) is defined as a collision.

2. In collision :
• The particles come closer before collision and after collision they either stick together or

move away from each other.

• The particles need not come in contact with each other for a collision.

• The law of conservation of linear momentum is necessarily applicable in a collision,

   whereas the law of conservation of mechanical energy is not.

 

Two dimensional collision
or

Oblique collision

On the basis of direction On the basis of kinetic energy

One dimensional collision
or

Head on collision

Elastic 
collision

Inelastic
collision 

Perfectly inelastic
collision 

The collision in which 
the particles move
along the same straight
line before and after the 
collision, is defined as one 
dimensional collision 

The collision, in which the 
particles move in the same 
plane at different angles 
before and after collision, 
is defined as oblique 
collision 

A collision is
said to be 
elastic, if the
total kinetic
energy before
and after 
collision 
remains the 
same

A collision is 
said to be 
inelastic, if
the total 
kinetic 
energy does 
not remains 
constant

The collision, in which 
particles get sticked 
together after the 
collision. It is called 
perfectly inelastic 
collision. In this type 
of inelastic collision, 
loss of energy is 
maximum.

Types of Collisions 

COLLISIONS
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2.1 Head on collision :

 

2.2 Elastic Collision :

1. For one dimensional collision between two bodies
     Total momentum before collision = Total momentum after collision.

2. m1 and m2 are masses of two bodies moving with velocities u1 and u2 in the same direction
     (u2 < u1). After collision their velocities are v1 and v2. Then

• For one dimensional collision between two bodies,
   m1u1 + m2u2 = m1v1 + m2v2  (conservation of momentum)

• If the second body is at rest before collision, u2 = 0
• If they approach each other before collision, u2 = – u1

• If they move together with velocity v after collision,
   m1 u1 + m2 u2 = (m1 + m2) v

     1 1 2 2

1 2

m u m u
v

(m m )





 (perfect inelastic collision)

3. Coefficient of restitution e = 1
     v2 – v1 = u1 – u2

Or relative velocity of separation after collision is equal to relative velocity of approach before
collision.

4. For perfect elastic collision between two bodies which is head on,

    m1u1 + m2u2 = m1v1 + m2v2  and  2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1
m u m u m v m v

2 2 2 2
  

    (v2– v1) = (u1– u2)

    Here
    (i)   If m1 = m2 = m, then v2 = u1 and v1 = 0
    (ii)  If m2>>m1, then v1 = – u1 and v2 = 0
    (iii) If m1>>m2 then v1 = u1 and v2= 2u1

5. When a lighter body collides with a stationary heavy body elastically, the second body starts
moving with the velocity of the first body while the first body stops.

6. When a heavy body collides elastically with a stationary lighter body, then heavy body continues
to move with the same velocity but the lighter body starts moving with double the velocity of
heavy body.

COLLISIONS
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7. When a lighter body collides with a heavy body at rest, then it returns with the same velocity but
heavy body remains at rest.

8. When perfect elastic collision takes place between two bodies of same mass moving along a
direction, the two bodies interchange their velocities after collision.

9. For perfect elastic collision between a moving body m1 and stationary body m2

Fraction of K.E transferred to the second body = Fraction of K.E retained by the first body.

10. A ball is dropped from certain height. If the collision is perfectly elastic, it rebounds to the same
height.

11. When two bodies of equal mass moving towards each other collide elastically with same velocity
in magnitude, after collision, they move away with the same velocity in magnitude.

12. A body makes an oblique elastic collision with another body of same mass at rest. After collision,
they will move in mutually perpendicular directions.

13. Collisions between atomic, nuclear and fundamental particles are examples of elastic collisions.

2.3 Perfect Inelastic Collision :

1. For one dimensional collision between two bodies
Total momentum before collision = Total momentum after collision

2. After perfect inelastic collision the two bodies stick together and move with same velocity


 


1 1 2 2

1 2

m u m u
v

m m

3. The collision between a bullet and a target is perfectly inelastic if the bullet remains embedded
in the target.

4. Coefficient of restitution e = 0

 v1 = v2 = v

5. Only momentum is conserved and kinetic energy is not conserved.

6. If a body of mass m1 collides with a body of mass m2 at rest and the collision is perfectly
inelastic, 1

1 2

Final K.E m
Initial K.E (m m )




  (for the system)

If K is initial K.E of m1, then loss in K.E 2

1 2

m
K

m m
 

   

Fractional loss in K.E is 
2

1 2

m
m m

 
  

7. Loss in kinetic energy during perfect inelastic collision  


21 2
1 2

1 2

m m1
(u u )

2 m m

COLLISIONS
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8. If the two bodies approach each other before collision, common velocity after collision is





1 1 2 2

1 2

m u m u
v

m m  Loss in kinetic energy in the case is 
 

  
21 2

1 2
1 2

m m1
(u u )

2 m m

Coefficent of Restitution :

1. The ratio between relative velocity of separation after collision and relative velocity of approach

before collision is know as coefficient of restitution 



2 1

1 2

v v
u u

e

2. The value of ‘e’ is given by  0 1e
If e = 0, the collision is perfectly inelastic
If e = 1 the collision is perfectly elastic
If 0 < e < 1 the collision is semi elastic

3. e is dimensionless and has no units.

4. The value of e is independent of masses and the velocities of the colliding bodies

5. e depends on the nature of material of the colliding bodies

6. If a body is dropped from a height ‘h’ and after first rebound it rises to a height h1 the coefficient

of restitution    21
1

h
h h

h
e e  After nth rebound hn = e2nh

If the body strikes the ground with velocity v and rebounds with velocity v1 then

  1
1

v
v v

v
e e  After nth rebound vn= en v

7. A ball dropped from a height h. It strikes the ground and rebounds. Here ‘e’ is coefficient of
restitution and this collisions took place repeatedly. The total distance travelled by the ball before

coming to rest is 
 

   

2

2

1
d h

1
e
e

 Here total time taken by the ball to come to rest is      

2h 1
t

8 1
e
e

8. A ball of mass m is dropped from height h and after hitting the ground it rises to height less
than ‘h’. If ‘e’ is coefficient of restitution, the change in momentum of the ball in magnitude is

m 2gh(1 )e

9. For one dimensional collision between two bodies of masses m1 and m2 moving with initial
velocities u1 and u2 respectively, final velocities after collision are given by

  
    

1 2 2
1 1 2

1 2 1 2

m m m (1 )
v u u

m m m m
e e

COLLISIONS
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  
    

1 1 2
2 2 1

1 2 1 2

m m m (1 )
v u u

m m m m
e e

Here loss in kinetic energy during collision is 
 

   
2 21 2

1 2
1 2

m m1
(u u ) (1 )

2 m m
e

     2.4 Head on inelastic collision of two particles :

Let the coefficient of restitution for collision is e
(i)  Momentum is conserved m1u1 + m2u2 = m1v1 + m2v2 .....(i)
(ii) Kinetic energy is not conserved.

(iii) According to Newton’s law 2 1

1 2

v - v
e

u - u
  ...(ii)

By solving eq. (i) and (ii)

v1=
221

1
21 1 2

(1 e)mm em
u

m m m m

  
         

 
 1 1 2 2 2 1 2

2
1 2

m u m u – m e u – u
u

m m





v2=
2 1

21 1 2

1
2

m em (1 e)m
u

m m m m

   
         

 
 1 1 2 2 1 2 1

1
1 2

m u m u – m e u – u
u

m m





        2.5 Two Dimensional Collision :

1. Consider two bodies of masses m1 and m2 moving with velocities u1 and u2 along the same
straight line. They collide and after collision they move in directions making angles  and

with the initial direction of motion. Let v1 and v2 be their final velocities. Then

u1

m1

u2

m2

m1v1 sin

m2v2 sin 


 m1v1 cos + m2v2cos

m2

v2

m1
v1 

From conservation of momentum

m1 u1 + m2 u2 = m1 v1 cos + m2 v2 cos

0 = m1 v1 sin – m2 v2 sin

COLLISIONS
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      2.6 Oblique Collision :
Conserving the momentum of system in directions along normal (x-axis in our case) and
tangential (y-axis in our case)
m1u1cos1 + m2u2cos2 = m1v1cos1 + m2v2cos2 and
m2u2sin2 – m1u1sin1   = m2v2sin2 – m1v1sin1

1

2

u2
m2

m1

u1

Before
collision

m1

m2

y

v2

v1

1

2

After
collision

x

Since no force is acting on m1 and m2, along the tangent (i.e. y-axis) the individual
momentum of m1 and m2 remains conserved.
m1u1sin1 = m1v1sin1 & m2u2sin2 =  m2v2sin2

By using Newton’s experimental law along the line of impact

2 2 1 1

1 1 2 2

v cos – v cos
e

u cos – u cos
 


 

3. Rocket propulsion :

Thrust force on the rocket, gas

dm
F v

dt
 

From Newton’s Second law,

–Fgas = Frocket

Therefore,

rocket

dm
F v

dt


From free body diagram,

 
dm

v mg ma
dt

Where,

v is the relative velocity of gases w.r.t. rocket

m is the mass of the rocket

COLLISIONS
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g is the acceleration due to gravity

a is the initial acceleration of the rocket

dm
dt

 is the rate of consumption of fuel

Velocity of rocket at any instant

0
r

m
v u – gt v n

m
    
 



u v

At t=0
v=u
m=m0

At t=t
m=m
v=v

exhaust velocity = vr

4. Ballistic Pendulum :
1. It is used to find velocity of bullet. This arrangement consists of a wooden block suspended

using a rope or wire. A bullet fired horizontally into the block, it gets embedded and both
move together.

2. Let m be mass of the bullet which strikes the wooden block of mass M with velocity u and
gets embedded into it. After this the combined system moves with a velocity v and the
system rises to a height h above the previous level. Then

  mu M m v

 
 


mu

v
M m

As  
 


mu

v 2gh, 2gh
M m

M m
u 2gh

m
   

 

    

2mu
h / 2g

M m

3. In the previous case if the bullet emerges out from the block with velocity u1 and the
block rises to a height h,

  1m u u Mv

COLLISIONS
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COLLISIONS

    
  1 1m u u m u u

v or 2gh
M M

4. Ballistic pendulum is an example for perfect inelastic collision (if the bullet stops in the
block).
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ROTATIONAL MOTION

Angular velocity

d
dt







Angular acceleration
2

2

d d
dt dt
 

  


Angular momentum

L r p I   
   

Torque

dL
r F

dt
   



Rotational Kinetic energy
2

21 L
K I

2 2I
  

Rotational Power :
P .  



For constant angular acceleration

 0 t 


2

0

1
t t

2
   

 2 2
0 2   

 n 0 (2n 1)
2


    

Moment of Inertia
A tensor but for fixed axis it is a scalar

For discrete distribution of mass I = m1r1
2 + m2r2

2 + .....+mnr
2

n = 
i n

2
i i

i 1

mr





For continuous distribution of mass 2I dI dmr  
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 Radius of gyration

I
k

M


Theorems regarding moment of inertia
 Theorem of parallel axes Iaxis = Icm + md2

where d is the perpendicular distance between parallel axes.
 Theorem of perpendicular axes Iz = Ix + Iy

 Rod

Rectangular Lamina








 


12

b
MI

22

Ring :

 Disc :

Circular Hollow Disk
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Hollow cylinder











2

R

12
MI

22

Solid cylinder











4

R

12
MI

22

Solid & Hollow sphere

Rolling motion

 Total kinetic energy 2 2
CM CM

1 1
Mv I

2 2
  

 Total angular momentum CM CMMv R I  

Pure rolling (or rolling without slipping) on stationary surface
 Condition  : vcm = R

In accelerated motion acm = R
 If vcm > R then rolling with forward slipping.
 If vcm < Rthen rolling with backward slipping.
 Total kinetic energy in pure rolling

2 2
2 2 2cm

total cm cm2 2

v1 1 1 k
K Mv (Mk ) Mv 1

2 2 R 2 R
   

      
  

Pure rolling motion on an inclined plane
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Acceleration 2 2

gsin
a

1 k / R





Minimum frictional coefficient min 2 2

tan
1 R / k


 



Torque d d(I ) dL dJ
I I or

dt dt dt dt
 

     
  

Change in angular momentum L t  
 

Work done by a torque  W d   


KEY POINTS
 A ladder is more apt to slip, when you are high up on it than when you just begin to

climb because at the high up on a ladder the torque is large and on climbing up, the
torque is small.

 When a sphere rolls on a horizontal table, it slows down and eventually stops because
when the sphere rolls on the table, both the sphere and the surface deform near the
contact. As a result the normal force does not pass through the centre and provide an
angular deceleration.

 The spokes near the top of a rolling bicycle wheel are more blurred than those near
the bottom of the wheel because the spokes near the top of wheel are moving faster
than those near the bottom of the wheel.

 Instantaneous angular velocity is a vector quantity because infinitesimal angular
displacement is a vector.

 The relative angular velocity between any two points of a rigid body is zero at any
instant.

 All particles of a rigid body, which do not lie on an axis of rotation move on circular
paths with centres at an axis of rotation.

 Instantaneous axis of rotation is stationary w.r.t. ground

 Many greater rivers flow toward the equator. The sediment that they carry increases
the time of rotation of the earth about its own axis because the momentum of the
angular earth about its rotation axis is conserved.

 The hard boiled egg and raw egg can be distinguished on the basis of spinning of both.
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