

Topic : KTG, Thermometry and thermodynamics

1. Thermodynamic process is shown below on a P-V diagram for one mole of an ideal gas . If $V_2=2V_1$, then the ratio of temperature $\dfrac{T_2}{T_1}$ is :

- **A.** $\frac{1}{\sqrt{2}}$
- **B.** $\frac{1}{2}$
- **C**. 2
- D. $\sqrt{2}$

2. Given below are two statements:

Statement 1: In a diatomic molecule, the rotational energy at a given temperature obeys Maxwell's distribution.

Statement 2: In a diatomic molecule, the rotational energy at a given temperature equals the translational kinetic energy for each molecule.

In the light of above statements, choose the correct answer from the options given below:

- **A** Both statement 1 and statement 2 are false.
- **B.** Both statement 1 and statement 2 are true.
- **C.** Statement 1 is false but statement 2 is true
- **D.** Statement 1 is true but statement 2 is false.
- 3. On the basis of kinetic theory of gases, the gas exerts pressure because its molecules:
 - A. suffers change in momentum when impinge on the walls of container.
 - B. continuously stick to the walls of the container.
 - C. continuously lose their energy till it reaches wall.
 - **D.** are attracted by the walls of the container.
- 4. The root mean square speed of molecules of a given mass of a gas at 27° C and 1 atmosphere pressure is $200~\mathrm{ms^{-1}}$. The root mean square speed of molecules of the gas at 127° C and 2 atmosphere pressure is $\frac{x}{\sqrt{3}}\mathrm{ms^{-1}}$
 - . The value of x will be .

5. If one mole of an ideal gas at (P_1,V_1,T) is allowed to expand reversibly and isothermally (A to B) its pressure is reduced to $\frac{1}{2}$ of original pressure (see figure). This is followed by a constant volume cooling till its pressure is reduced to one-fourth of initial value $(B \to C)$. Then it is restored to its initial state by a reversible adiabatic compression (C to A). The net work done by the gas is equal to :

- **A**. (
- $\mathbf{B.} \quad -\frac{RT}{2(\gamma-1)}$
- **C.** $RT \left[\ln 2 \frac{1}{2(\gamma 1)} \right]$
- D. $RT \ln 2$

6. n moles of a perfect gas undergoes a cyclic process ABCA (see figure) consisting of the following processes -

 $A \to B$: Isothermal expansion at temperature T so that the volume is doubled from V_1 to V_2 and pressure changes from P_1 to P_2 .

 $B \to C$: Isobaric compression at pressure P_2 to initial volume V_1 .

C o A : Isochoric change, leading to change of pressure from P_2 to P_1 .

Total work done in the complete cycle ABCA is :

- **A**. 0
- $\mathbf{B.} \quad nRT\left(\ln 2 + \frac{1}{2}\right)$
- **C.** $nRT(\ln 2)$
- $\mathbf{D.} \quad nRT \left(\ln 2 \frac{1}{2} \right)$

7. Match List-I with List-II.

List-I	List-II
(a) Isothermal	(i) Pressure constant
(b) Isochoric	(ii) Temperature constant
(c) Adiabatic	(iii) Volume constant
(d) Isobaric	(iv) Heat content is constant

Choose the correct answer from the options given below -

A.
$$(a) - (ii), (b) - (iv), (c) - (iii), (d) - (i)$$

B.
$$(a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)$$

C.
$$(a) - (i), (b) - (iii), (c) - (ii), (d) - (iv)$$

D.
$$(a) - (iii), (b) - (ii), (c) - (i), (d) - (iv)$$

8. Each side of a box made of metal sheet in cubic shape is a at room temperature T. The coefficient of linear expansion of the metal sheet is ' α '. The metal sheet is heated uniformly, by a small temperature ΔT , so that its new temperature is $T + \Delta T$. Calculate the increase in the volume of the metal box.

A.
$$\frac{4}{3}\pi a^3 \alpha \Delta T$$

B.
$$4\pi a^3 \alpha \Delta T$$

C.
$$3a^3\alpha\Delta T$$

D.
$$4a^3 \alpha \Delta T$$

- 9. A diatomic gas, having $C_p=rac{7}{2}R$ and $C_v=rac{5}{2}R$ is heated at constant pressure. The ratio dU:dQ:dW is -
 - **A.** 3:7:2
 - **B.** 5:7:2
 - **c.** 5:7:3
 - **D.** 3:5:2
- 10. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.
 - Assertion A: When a rod lying freely is heated, no thermal stress is developed in it.
 - Reason R: On heating, the length of the rod increases.
 - In the light of the above statements, choose the correct answer from the options given below.
 - **A.** A is true, but R is false.
 - **B.** Both A and R are true, and R is the correct explanation of A.
 - **C.** Both A and R are true, but R is **NOT** the correct explanation of A.
 - **D.** A is false, but R is true.
- 11. A container is divided into two chambers by a partition. The volume of the first chamber is $4.5~\mathrm{L}$ and the second chamber is $5.5~\mathrm{L}$. The first chamber contains $3.0~\mathrm{mol}$ of gas at pressure $2.0~\mathrm{atm}$ and the second chamber contain $4.0~\mathrm{mol}$ of identical gas at pressure $3.0~\mathrm{atm}$. After the partition is removed and the mixture attains equilibrium, then, the common equilibrium pressure existing in the mixture is $x \times 10^{-1}~\mathrm{atm}$. Value of x is ______. (up to two significant figures)

- 12. Calculate the value of mean free path (λ) for oxygen molecules at temperature 27° C and pressure 1.01×10^{5} Pa . Assume the molecular diameter 0.3 nm and the gas is ideal. $(k=1.38 \times 10^{-23} \text{ JK}^{-1})$
 - **A.** 102 nm
 - B. $_{32 \mathrm{nm}}$
 - C. $58 \, \mathrm{nm}$
 - D. $86 \, \mathrm{nm}$
- 13. A bimetallic strip consists of metals *A* and *B*. It is mounted rigidly as shown. The metal *A* has higher coefficient of expansion compared to that of metal *B*. When the bimetallic strip is placed in a cold bath, it will:

- A. Not bend but shrink
- B. Neither bend nor shrink
- **C.** Bend towards the right
- D. Bend towards the left
- 14. If one mole of a polyatomic gas has two vibrational modes and β is the ratio of molar specific heats for polyatomic gas. $\beta=\frac{C_p}{C_v}$, then the value of β is :
 - **A.** 1.35
 - **B**. 1.02
 - **C.** 1.25
 - **D.** 1.2

15. Which one is the correct option depicting the two different thermodynamic processes?

- **A.** (c) and (d)
- **B.** (b) and (c)
- C. (a) only
- **D.** (c) and (a)
- 16. A Carnot's engine working between $400~\rm K$ and $800~\rm K$ has a work output of $1200~\rm J$ per cycle. The amount of heat energy supplied to the engine from the source in each cycle is :
 - **A.** 1900 J
 - **B.** $_{3200\,\mathrm{J}}$
 - **c**. $_{2400 \text{ J}}$
 - **D.** $_{1600\,\mathrm{J}}$
- 17. What will be the average value of energy along one degree of freedom for an ideal gas in thermal equilibrium at a temperature T? (k_B is Boltzmann constant)
 - **A.** k_BT
 - $\mathbf{B.} \quad \frac{2}{3}k_BT$
 - **c.** $\frac{3}{2}k_BT$
 - $\mathbf{D.} \quad \frac{1}{2}k_BT$

18. The P-V diagram of a diatomic ideal gas system going under cyclic process as shown in figure. The work done during an adiabatic process CD is (use $\gamma=1.4$):

- **A.** $200 \, \mathrm{J}$
- **B.** $-500 \, \mathrm{J}$
- **c**. $-400 \,\mathrm{J}$
- **D.** $400 \, \mathrm{J}$
- 19. Consider a sample of oxygen gas behaving like an ideal gas. At $300~\rm K$, the ratio of root-mean-square (RMS) velocity to the average velocity of the gas molecules will be :

(Molecular weight of oxygen= $32~\mathrm{g/mol}$; $R=8.3~\mathrm{JK^{-1}mol^{-1}}$)

- **A.** $\sqrt{\frac{5}{3}}$
- **B.** $\sqrt{\frac{8}{3}}$
- $\mathbf{C.} \quad \sqrt{\frac{3\pi}{8}}$
- $\mathbf{D.} \quad \sqrt{\frac{8\pi}{3}}$

20. For adiabatic expansion of an ideal gas, the fractional change in its pressure is equal to :

 $(\gamma \text{ is the ratio of specific heats and } V \text{ is the volume of the gas})$

- $\mathbf{A.}\quad _{-\gamma }\frac{dV}{V}$
- B. $\frac{dV}{V}$
- $\mathbf{C.} \quad -\frac{1 \ dV}{\gamma \ V}$
- $\mathbf{D.} \quad -\gamma \frac{V}{dV}$
- 21. An ideal gas in a cylinder is separated by a piston in such a way that the entropy of one part is S_1 and that of the other part is S_2 . Given that $S_1 > S_2$. If the piston is removed, then the total entropy of the system will be :
 - **A.** $S_1 + S_2$
 - **B.** $S_1 S_2$
 - C. $S_1 imes S_2$
 - $\mathbf{D.} \quad \frac{S_1}{S_2}$
- 22. Consider two ideal diatomic gases A and B at some temperature T. Molecules of the gas A are rigid, and have a mass m. Molecules of the gas B have an additional vibrational mode, and have a mass $\frac{m}{4}$. The ratio of the specific heats $(C_V)_A$ and $(C_V)_B$ of the gases A and B respectively, is:
 - **A.** 7:9
 - **B.** 5:9
 - **c.** 3:5
 - **D.** 5:7

- 23. When the temperature of a metal wire is increased from $0^{\circ}\mathrm{C}$ to $10^{\circ}\mathrm{C}$, its length increased by 0.02%. The percentage change in its mass density will be closest to
 - **A.** 0.06
 - **B.** 2.3
 - c. 0.008
 - **D.** 0.8
- 24. Two different wires having lengths L_1 and L_2 and respective temperature coefficient of linear expansion α_1 and α_2 are joined end to end. Then the effective temperature coefficient of linear expansion is:
 - A. $\frac{\alpha L_1 + \alpha_2 L_2}{L_1 + L_2}$
 - **B.** $2\sqrt{\alpha_1\alpha_2}$
 - $\mathbf{C.} \quad \frac{\alpha_1 + \alpha_2}{2}$
 - $\textbf{D.} \quad \frac{\alpha_1\alpha_2}{\alpha_1+\alpha_2\,(L_2+L_1)^2}$
- 25. Consider a mixture of gas molecules of type A,B and C having masses, $m_A < m_B < m_C$. The ratio of their root-mean-square speeds at normal temperature and pressure is :
 - $\mathbf{A.} \quad v_A = v_B = v_C = 0$
 - $\textbf{B.} \quad \frac{1}{v_A} > \frac{1}{v_B} > \frac{1}{v_C}$
 - **C.** $v_A=v_B
 eq v_C$
 - $\mathbf{D.} \quad \frac{1}{v_A} < \frac{1}{v_B} < \frac{1}{v_C}$

26. What will be the average value of energy for a monoatomic gas in thermal equilibrium at temperature T?

A.
$$\frac{2}{3}k_BT$$

B.
$$k_BT$$

c.
$$\frac{3}{2}k_BT$$

D.
$$\frac{1}{2}k_BT$$

27. For a gas $C_P - C_V = R$ in a state P and $C_P - C_V = (1.10) R$ in a state Q. T_P and T_Q are the temperatures in two different states P and Q respectively. Then,

$$\textbf{A.} \quad T_P = T_Q$$

$$\textbf{B.} \quad T_P < T_Q$$

C.
$$T_P=0.9\ T_Q$$

$$\mathbf{D.} \quad T_P > T_Q$$

- 28. A system consists of two types of gas molecules A and B having the same number density $2\times 10^{25}~{\rm m}^{-3}$. The diameter of A and B are $10~\dot{A}$ and $5~\dot{A}$ respectively. They suffer collision at room temperature. The ratio of average distance covered by the molecule A to that of B between two successive collision is $\times 10^{-2}$
- 29. The number of molecules in one litre of an ideal gas at $300~\rm K$ and 2 atmospheric pressure with mean kinetic energy $2\times10^{-9}~\rm J$ per molecule is :

A.
$$0.75 \times 10^{11}$$

B.
$$3 \times 10^{11}$$

c.
$$1.5 \times 10^{11}$$

D.
$$6 \times 10^{11}$$

- 30. An ideal gas is expanding such that $PT^3=\mbox{constant}$. The coefficient of volume expansion of the gas is:
 - A. $\frac{1}{T}$
 - $\mathbf{B.} \quad \frac{2}{T}$
 - $\mathbf{C.} \quad \frac{3}{T}$
 - $\mathbf{D.} \quad \frac{4}{T}$