Full Syllabus Test 1

1. The values of a for which the number 6 lies in between the roots of the equation $x^{2}+2(a-3) x+9=0$, belong to
A. $\left(\frac{3}{4}, \infty\right)$
B. $\left(-\infty,-\frac{3}{4}\right)$
C. $(-\infty, 0) \cup(6, \infty)$
D. $(-\infty, 0) \cup(3, \infty)$
2. The line $4 x-3 y+2=0$ is rotated through an angle of $\frac{\pi}{4}$ in clockwise direction about the point $(1,2)$. The equation of the line in its new position is
A. $x-7 y+13=0$
B. $y-7 x+5=0$
C. $x+7 y-15=0$
D. $y+7 x-15=0$
3. The circle passing through $(1,-2)$ and touching the x-axis at $(3,0)$ also passes through the point
A. $(-2,-2)$
B. $(2,-5)$
C. $(5,-2)$
D. $(-2,5)$

Full Syllabus Test 1

4. Let the coefficients of powers of x in the second, third and fourth terms in the binomial expansion of $(1+x)^{n}$, where n is a positive integer, be in arithmetic progression. The sum of the coefficients of odd powers of x in the expansion is
A. 32
B. 64
C. 128
D. 256
5. If the imaginary part of $\frac{2 z+1}{i z+1}$ is -2 , then the locus of z is
A. a circle
B. a straight line
C. an ellipse
D. a parabola
6. A geometric progression with common ratio r, consists of an even number of terms. If the sum of all terms is 5 times the sum of the terms occupying the odd places, then $\sum_{i=1}^{4}(i r)^{2}$ is
A. 1456
B. 120
C. 1172
D. 480

Full Syllabus Test 1

7. If a, b, c, x are positive integers, then $\left|\begin{array}{ccc}a^{2}+x & a b & a c \\ a b & b^{2}+x & b c \\ a c & b c & c^{2}+x\end{array}\right|$ is divisible by
A. x^{2}
B. x^{3}
C. x^{4}
D. $a^{2}+b^{2}+c^{2}$
8. An open cylindrical can has to be made with 100 square units of tin. If its volume is maximum, then the ratio of its base radius and the height is
A. $2: 1$
B. $1: 1$
C. 1:2
D. $\sqrt{2}: 1$
9. If $\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}$, then the sum of the solutions in x is
A. 1
B. -1
C. 0
D. not finite

Full Syllabus Test 1

10. If in a $\triangle A B C, \sin C+\cos C+\sin (2 B+C)-\cos (2 B+C)=2 \sqrt{2}$, then $\triangle A B C$ is
A. isosceles
B. equilateral
C. right-angled isosceles
D. right-angled but not isosceles
11. If the chords of the hyperbola $x^{2}-y^{2}=a^{2}$ touch the parabola $y^{2}=4 a x$, then the locus of the midpoints of the chords is the curve
A. $y^{2}(x+a)=x^{3}$
B. $y^{2}(x-a)=x^{3}$
C. $y^{2}(x+2 a)=3 x^{3}$
D. $y^{2}(x-2 a)=2 x^{3}$
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{3}+x^{2}+3 x+\sin x$. Then f is
A. injective and surjective
B. injective but not surjective
C. surjective but not injective
D. neither injective nor surjective

Full Syllabus Test 1

13. If a variable tangent of the circle $x^{2}+y^{2}=1$ intersects the ellipse
$x^{2}+2 y^{2}=4$ at points P and Q, then the locus of the point of intersection of tangent at P and Q is
A. a circle of radius 2 units
B. a parabola with focus at $(2,3)$
C. an ellipse with latus rectum 2 units
D. a hyperbola with eccentricity $\frac{3}{2}$
14. The two vectors $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+3 \hat{j}+5 \hat{k}$ represent the two sides $\overrightarrow{A B}$ and $\overrightarrow{A C}$ respectively of a triangle $A B C$. The length of the median through A is
A. 7
B. 14
C. $\sqrt{14}$
D. $\frac{\sqrt{14}}{2}$
15. The logical statement $(p \rightarrow q) \rightarrow((\sim p \rightarrow q) \rightarrow q)$ is
A. a tautology
B. equivalent to $\sim p \rightarrow q$
C. equivalent to $p \rightarrow \sim q$
D. a fallacy

Full Syllabus Test 1

16. $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$ is equal to
A. $e^{1 / 3}$
B. 1
C. e
D. 0
17. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\max \left\{x, x^{3}\right\}$. Then the set of all points where f is not differentiable, is
A. $\{-1,0\}$
B. $\{-1,0,1\}$
C. $\{0,1\}$
D. $\{-1,1\}$
18. Let $f(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$. Then
A. f^{\prime} does not exist at $x=0$
B. f^{\prime} exists and is continuous at $x=0$
C. f^{\prime} exists but not continuous at $x=0$
D. f^{\prime} does not exist at any point

Full Syllabus Test 1

19. The area bounded by $y=x^{2}, y=[x+1], x \leq 1$ and the y-axis, where [.] represents the greatest integer function, is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{7}{3}$
D. 1
20. The solution of the differential equation $y d x-x d y=y^{2} \tan \left(\frac{x}{y}\right) d x$ is (C is constant of integration)
A. $\frac{x}{y}=C e^{x}$
B. $\sin \left(\frac{x}{y}\right)=C e^{x}$
C. $\cos \left(\frac{x}{y}\right)=C e^{x}$
D. $x=C y$
21. The total number of numbers greater than $4,00,000$ that can be formed by using the digits $0,2,2,4,4,5$ is
22. Three persons A, B, C are to speak at a function along with 5 other persons. If the persons speak in random order, the probability that A speaks before B and B speaks before C is $\frac{p}{q}$, where p, q are co-prime. Then $p+q$ is
23. If $x=\log _{24} 12, y=\log _{36} 24$ and $z=\log _{48} 36$, then $(1+x y z)$ equals k times $y z$. The value of k is
24. The plane $P_{1}: 4 x+7 y+4 z+81=0$ is rotated through a right angle about its line of intersection with the plane $P_{2}: 5 x+3 y+10 z=25$. If the plane in its new position be denoted by P and the distance of plane P from the origin is d units, then the value of $[d / 2]$, where [.] represents the greatest integer

Full Syllabus Test 1

25.

If $\int_{\ln 2}^{k} \frac{1}{\sqrt{e^{x}-1}} d x=\frac{\pi}{6}$, then $k=\ln p$. The value of $p+1$ is
26. If the mean and variance of eight numbers $3,7,9,12,13,20, x$ and y be 10 and 25 respectively, then $x y$ is equal to
27. The distance from the origin to the normal of the curve $x=2 \cos t+2 t \sin t$, $y=2 \sin t-2 t \cos t$ at $t=\frac{\pi}{4}$ is
28.

$$
\text { If } y=\frac{\sin x}{1+\frac{\cos x}{1+\frac{\sin x}{1+\frac{\cos x}{1+\cdots \infty}}}} \text {, then } \frac{d x}{d y} \text { at } x=\frac{\pi}{2} \text { is }
$$

29. If $f(x)=\int \frac{2 x^{5}+5 x^{4}}{\left(4+2 x+3 x^{5}\right)^{2}} d x,(x \geq 0)$ and $f(0)=0$, then the value of $72 \cdot f(1)$ is
30. In triangle $A B C, \angle B=\frac{\pi}{3}$ and $\angle C=\frac{\pi}{4}$. Let D divide $B C$ internally in the ratio 1:3 and the angles $\angle B A D=\theta, \angle C A D=\phi$. The value of $\frac{\sin ^{2} \phi}{\sin ^{2} \theta}=$
