

Subject: Mathematics

1. The values of a for which the number 6 lies in between the roots of the equation $x^2+2(a-3)x+9=0$, belong to

A.
$$\left(\frac{3}{4},\infty\right)$$

$$\mathbf{B.} \quad \left(-\infty, -\frac{3}{4}\right)$$

C.
$$(-\infty,0)\cup(6,\infty)$$

D.
$$(-\infty,0)\cup(3,\infty)$$

2. The line 4x - 3y + 2 = 0 is rotated through an angle of $\frac{\pi}{4}$ in clockwise direction about the point (1,2). The equation of the line in its new position is

A.
$$x - 7y + 13 = 0$$

B.
$$y - 7x + 5 = 0$$

C.
$$x + 7y - 15 = 0$$

D.
$$y + 7x - 15 = 0$$

3. The circle passing through (1,-2) and touching the x-axis at (3,0) also passes through the point

A.
$$(-2, -2)$$

B.
$$(2, -5)$$

C.
$$(5,-2)$$

D.
$$(-2,5)$$

- 4. Let the coefficients of powers of x in the second, third and fourth terms in the binomial expansion of $(1+x)^n$, where n is a positive integer, be in arithmetic progression. The sum of the coefficients of odd powers of x in the expansion is
 - **A**. 32
 - **B.** 64
 - **c**. ₁₂₈
 - **D.** 256
- 5. If the imaginary part of $\frac{2z+1}{iz+1}$ is -2, then the locus of z is
 - A. a circle
 - B. a straight line
 - C. an ellipse
 - D. a parabola
- 6. A geometric progression with common ratio r, consists of an even number of terms. If the sum of all terms is 5 times the sum of the terms occupying the odd places, then $\sum_{i=1}^4 (ir)^2$ is
 - **A.** 1456
 - **B.** 120
 - **c**. $_{1172}$
 - **D.** $_{480}$

7. If
$$a,b,c,x$$
 are positive integers, then $\begin{vmatrix} a^2+x & ab & ac \\ ab & b^2+x & bc \\ ac & bc & c^2+x \end{vmatrix}$ is divisible by

A.
$$x^2$$

B.
$$x^3$$

C.
$$x^4$$

D.
$$a^2 + b^2 + c^2$$

8. An open cylindrical can has to be made with 100 square units of tin. If its volume is maximum, then the ratio of its base radius and the height is

C.
$$1:2$$

D.
$$\sqrt{2}:1$$

9. If $(\tan^{-1}x)^2 + (\cot^{-1}x)^2 = \frac{5\pi^2}{8}$, then the sum of the solutions in x is

- 10. If in a $\triangle ABC$, $\sin C + \cos C + \sin(2B+C) \cos(2B+C) = 2\sqrt{2}$, then $\triangle ABC$ is
 - A. isosceles
 - B. equilateral
 - C. right-angled isosceles
 - D. right-angled but not isosceles
- 11. If the chords of the hyperbola $x^2 y^2 = a^2$ touch the parabola $y^2 = 4ax$, then the locus of the midpoints of the chords is the curve
 - **A.** $y^2(x+a) = x^3$
 - **B.** $y^2(x-a) = x^3$
 - **C.** $y^2(x+2a) = 3x^3$
 - **D.** $y^2(x-2a)=2x^3$
- 12. Let $f:\mathbb{R} o \mathbb{R}$ be a function defined by $f(x) = x^3 + x^2 + 3x + \sin x$. Then f is
 - A. injective and surjective
 - B. injective but not surjective
 - C. surjective but not injective
 - **D.** neither injective nor surjective

13. If a variable tangent of the circle $x^2+y^2=1$ intersects the ellipse $x^2+2y^2=4$ at points P and Q, then the locus of the point of intersection of tangent at P and Q is

- **A.** a circle of radius 2 units
- **B.** a parabola with focus at (2,3)
- **C.** an ellipse with latus rectum 2 units
- **D.** a hyperbola with eccentricity $\frac{3}{2}$

14. The two vectors $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+3\hat{j}+5\hat{k}$ represent the two sides \overrightarrow{AB} and \overrightarrow{AC} respectively of a triangle ABC. The length of the median through A is

- **A**. 7
- **B**. 12
- **C**. $\sqrt{14}$
- **D.** $\frac{\sqrt{14}}{2}$

15. The logical statement $(p o q) o ig((\sim p o q) o q)$ is

- A. a tautology
- **B.** equivalent to $\sim p
 ightarrow q$
- **C.** equivalent to $p \rightarrow \sim q$
- D. a fallacy

16.
$$\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{1/x^2}$$
 is equal to

- **A.** $e^{1/3}$
- **B**. 1
- C. e
- \mathbf{D} . 0
- 17. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \max\{x, x^3\}$. Then the set of all points where f is not differentiable, is
 - **A.** $\{-1,0\}$
 - **B.** $\{-1,0,1\}$
 - **C.** $\{0,1\}$
 - **D.** $\{-1,1\}$

18. Let
$$f(x)=\left\{egin{array}{ll} x^2\sinrac{1}{x}, & x
eq 0 \ 0, & x=0 \end{array}
ight.$$
 . Then

- **A.** f' does not exist at x = 0
- **B.** f' exists and is continuous at x=0
- **C.** f' exists but not continuous at x=0
- **D.** f' does not exist at any point

- 19. The area bounded by $y=x^2, y=[x+1], x \le 1$ and the y-axis, where [.] represents the greatest integer function, is
 - **A.** $\frac{2}{3}$
 - **B.** $\frac{1}{3}$
 - **c**. $\frac{7}{3}$
 - **D**. ₁
- 20. The solution of the differential equation $ydx-xdy=y^2\tan\left(\frac{x}{y}\right)dx$ is (C is constant of integration)
 - $\mathbf{A.} \quad \frac{x}{y} = Ce^x$
 - **B.** $\sin\left(\frac{x}{y}\right) = Ce^x$
 - $\mathbf{C.} \quad \cos\left(\frac{x}{y}\right) = Ce^x$
 - $\mathbf{D.} \quad x = Cy$
- 21. The total number of numbers greater than 4,00,000 that can be formed by using the digits 0,2,2,4,4,5 is
- 22. Three persons A,B,C are to speak at a function along with 5 other persons. If the persons speak in random order, the probability that A speaks before B and B speaks before C is $\frac{p}{q}$, where p,q are co-prime. Then p+q is
- 23. If $x=\log_{24}12,\,y=\log_{36}24$ and $z=\log_{48}36,$ then (1+xyz) equals k times yz. The value of k is
- 24. The plane $P_1: 4x+7y+4z+81=0$ is rotated through a right angle about its line of intersection with the plane $P_2: 5x+3y+10z=25$. If the plane in its new position be denoted by P and the distance of plane P from the origin is d units, then the value of $\lfloor d/2 \rfloor$, where $\lfloor . \rfloor$ represents the greatest integer

25. If
$$\int\limits_{\ln 2}^k rac{1}{\sqrt{e^x-1}} dx = rac{\pi}{6},$$
 then $k=\ln p.$ The value of $p+1$ is

- 26. If the mean and variance of eight numbers 3, 7, 9, 12, 13, 20, x and y be 10 and 25 respectively, then xy is equal to
- 27. The distance from the origin to the normal of the curve $x=2\cos t+2t\sin t,$ $y=2\sin t-2t\cos t$ at $t=\frac{\pi}{4}$ is

28. If
$$y = \frac{\sin x}{1 + \frac{\cos x}{1 + \frac{\sin x}{1 + \frac{\cos x}{1 + \cdots \infty}}}$$
, then $\frac{dx}{dy}$ at $x = \frac{\pi}{2}$ is

29. If
$$f(x)=\intrac{2x^5+5x^4}{(4+2x+3x^5)^2}dx, (x\geq 0)$$
 and $f(0)=0,$ then the value of $72\cdot f(1)$ is

30. In triangle ABC, $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$. Let D divide BC internally in the ratio 1:3 and the angles $\angle BAD = \theta$, $\angle CAD = \phi$. The value of $\frac{\sin^2 \phi}{\sin^2 \theta} = \frac{\sin^2 \phi}{\sin^2 \theta}$