Full Syllabus Test 1

Subject: Mathematics

1. The values of a for which the number 6 lies in between the roots of the equation $x^{2}+2(a-3) x+9=0$, belong to
(A. $\left(\frac{3}{4}, \infty\right)$B. $\left(-\infty,-\frac{3}{4}\right)$
\times
C. $(-\infty, 0) \cup(6, \infty)$
\times
D. $(-\infty, 0) \cup(3, \infty)$

$f(x)=x^{2}+2(a-3) x+9$ is a parabola facing upwards as shown in the
figure.
Let the roots be α and β with $\alpha<\beta$
If 6 lies between α and β,
$f(6)<0$
$\Rightarrow(6)^{2}+2(a-3)(6)+9<0$
$\Rightarrow 12 a+9<0$
$\Rightarrow a<-\frac{3}{4}$

Full Syllabus Test 1

2. The line $4 x-3 y+2=0$ is rotated through an angle of $\frac{\pi}{4}$ in clockwise direction about the point $(1,2)$. The equation of the line in its new position is
A. $x-7 y+13=0$

X B. $y-7 x+5=0$
x C. $x+7 y-15=0$
x
D. $y+7 x-15=0$

$(1,2)$ lies on the line $4 x-3 y+2=0$
The slope of the given line is $\tan \theta=\frac{4}{3}$
Let the slope of the new line be m.
Angle between these two lines is 45°
$\Rightarrow \tan 45^{\circ}=\left|\frac{\frac{4}{3}-m}{1+\frac{4}{3} m}\right|$
$\Rightarrow \frac{4-3 m}{3+4 m}= \pm 1$
$\Rightarrow 4-3 m= \pm(3+4 m)$
$\Rightarrow m=\frac{1}{7} \quad(m=-7$ rejected $)$
Required equation of line is
$y-2=\frac{1}{7}(x-1)$
$\Rightarrow x-7 y+13=0$

Full Syllabus Test 1

3. The circle passing through $(1,-2)$ and touching the x-axis at $(3,0)$ also passes through the point
x A. $(-2,-2)$
x B. $(2,-5)$C. $(5,-2)$
\times
D. $(-2,5)$

As the circle is touching the x-axis at $(3,0)$, let the centre of the circle be $C(3, k)$
Radius, $r=|k|$
Equation of the circle is $(x-3)^{2}+(y-k)^{2}=k^{2}$
Above circle passes through $(1,-2)$.
Then, $(1-3)^{2}+(-2-k)^{2}=k^{2}$
$\Rightarrow k=-2$
Hence, equation of the circle is $(x-3)^{2}+(y+2)^{2}=4$
Clearly, $(5,-2)$ satisfies it.

Full Syllabus Test 1

4. Let the coefficients of powers of x in the second, third and fourth terms in the binomial expansion of $(1+x)^{n}$, where n is a positive integer, be in arithmetic progression. The sum of the coefficients of odd powers of x in the expansion is
$x \quad$ A. 32
v
B. 64
\times
C. 128
\times
D. 256

Given that ${ }^{n} C_{1},{ }^{n} C_{2},{ }^{n} C_{3}$ are in A.P.
$\Rightarrow 2{ }^{n} C_{2}={ }^{n} C_{1}+{ }^{n} C_{3}$
$\Rightarrow \frac{2 n(n-1)}{2}=n+\frac{n(n-1)(n-2)}{6}$
$\Rightarrow n^{2}-9 n+14=0$
$\Rightarrow n=7 \quad[n=2$ rejected $]$
Sum of the coefficients of odd powers of x in the expansion is $2^{n-1}=2^{6}=64$

Full Syllabus Test 1

5. If the imaginary part of $\frac{2 z+1}{i z+1}$ is -2 , then the locus of z is
x A. a circleB. a straight line
x C. an ellipse
\times
D. a parabola

Let $z=x+i y$
$\frac{2 z+1}{i z+1}=\frac{2(x+i y)+1}{i(x+i y)+1}$
$=\frac{(2 x+1)+2 i y}{(1-y)+i x} \times \frac{(1-y)-i x}{(1-y)-i x}$
$=\frac{(2 x+1)+2 i y}{(1-y)^{2}+x^{2}} \times\{(1-y)-i x\}$
\therefore Imaginary part
$=\frac{2 y(1-y)-x(2 x+1)}{(1-y)^{2}+x^{2}}=-2$
$\Rightarrow 2 y-2 y^{2}-2 x^{2}-x=-2 x^{2}-2+4 y-2 y^{2}$
$\Rightarrow x+2 y-2=0$ which is a straight line.

Full Syllabus Test 1

6. A geometric progression with common ratio r, consists of an even number of terms. If the sum of all terms is 5 times the sum of the terms occupying the odd places, then $\sum_{i=1}^{4}(i r)^{2}$ is
x A. 1456
x B. 120
x C. 1172
(D) 480
Let the G.P. be $a, a r, a r^{2}, \ldots, a r^{2 n-1}$.
Then, $S_{2 n}=5\left(a+a r^{2}+\cdots+n\right.$ terms $)$
$\Rightarrow \frac{a}{1-r}\left(1-r^{2 n}\right)=5 \cdot \frac{a}{1-r^{2}}\left(1-\left(r^{2}\right)^{n}\right)$
$\Rightarrow r+1=5$
$\Rightarrow r=4$
Now, $\sum_{i=1}^{4}(i r)^{2}$
$=16 \sum_{i=1}^{4} i^{2}$
$=16 \times \frac{4 \times 5 \times 9}{6}$
$=480$

Full Syllabus Test 1

7. If a, b, c, x are positive integers, then $\left|\begin{array}{ccc}a^{2}+x & a b & a c \\ a b & b^{2}+x & b c \\ a c & b c & c^{2}+x\end{array}\right|$ is divisible by
(2) A. x^{2}
(B. x^{3}
x C. x^{4}

- D. $a^{2}+b^{2}+c^{2}$
$\Delta=\left|\begin{array}{ccc}a^{2}+x & a b & a c \\ a b & b^{2}+x & b c \\ a c & b c & c^{2}+x\end{array}\right|$
$=\frac{1}{a b c}\left|\begin{array}{ccc}a^{3}+a x & a^{2} b & a^{2} c \\ a b^{2} & b^{3}+b x & b^{2} c \\ a c^{2} & b c^{2} & c^{3}+c x\end{array}\right|$
$=\left|\begin{array}{ccc}a^{2}+x & a^{2} & a^{2} \\ b^{2} & b^{2}+x & b^{2} \\ c^{2} & c^{2} & c^{2}+x\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$,
$\Delta=\left|\begin{array}{ccc}a^{2}+b^{2}+c^{2}+x & a^{2}+b^{2}+c^{2}+x & a^{2}+b^{2}+c^{2}+x \\ b^{2} & b^{2}+x & b^{2} \\ c^{2} & c^{2} & c^{2}+x\end{array}\right|$
$=\left(a^{2}+b^{2}+c^{2}+x\right)\left|\begin{array}{ccc}1 & 1 & 1 \\ b^{2} & b^{2}+x & b^{2} \\ c^{2} & c^{2} & c^{2}+x\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$
$\Delta=\left(a^{2}+b^{2}+c^{2}+x\right)\left|\begin{array}{ccc}1 & 0 & 0 \\ b^{2} & x & 0 \\ c^{2} & 0 & x\end{array}\right|$
$=\left(a^{2}+b^{2}+c^{2}+x\right) x^{2}$
\therefore determinant is divisible by x^{2}

Full Syllabus Test 1

8. An open cylindrical can has to be made with 100 square units of tin. If its volume is maximum, then the ratio of its base radius and the height is
x A. $2: 1$
B. $1: 1$
x C. 1:2
X D. $\sqrt{2}: 1$
Let r be the base radius and h be the height of the cylinder.
Then, $2 \pi r h+\pi r^{2}=100$
$\Rightarrow h=\frac{50}{\pi r}-\frac{r}{2}$
Volume of cylinder, $V=\pi r^{2} h=\pi r^{2}\left(\frac{50}{\pi r}-\frac{r}{2}\right)=50 r-\frac{\pi r^{3}}{2}$
$\frac{d V}{d r}=50-\frac{3 \pi r^{2}}{2}$
$\frac{d V}{d r}=0$
$\Rightarrow r=\frac{10}{\sqrt{3 \pi}}$
$\frac{d^{2} V}{d r^{2}}=-3 \pi r<0$ at $r=\frac{10}{\sqrt{3 \pi}}$
Hence, V is maximum when $r=\frac{10}{\sqrt{3 \pi}}$
$\therefore h=\frac{50}{\pi \cdot \frac{10}{\sqrt{3 \pi}}}-\frac{10}{2 \sqrt{3 \pi}}=\frac{10}{\sqrt{3 \pi}}$
So, when V is maximum, $r: h=1: 1$

Full Syllabus Test 1

9. If $\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}$, then the sum of the solutions in x is
x A. 1
(v) B. -1
x C. 0
x D. not finite
$\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}$
Since $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$,
So, $\left(\tan ^{-1} x\right)^{2}+\left(\frac{\pi}{2}-\tan ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}$
$\Rightarrow\left(\tan ^{-1} x\right)^{2}+\frac{\pi^{2}}{4}-\pi \tan ^{-1} x+\left(\tan ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}$
$\Rightarrow 2\left(\tan ^{-1} x\right)^{2}-\pi \tan ^{-1} x+\frac{\pi^{2}}{4}-\frac{5 \pi^{2}}{8}=0$
$\Rightarrow 16\left(\tan ^{-1} x\right)^{2}-8 \pi \tan ^{-1} x-3 \pi^{2}=0$
Above equation is quadratic in $\tan ^{-1} x$
$\tan ^{-1} x=\frac{8 \pi \pm \sqrt{64 \pi^{2}+64 \cdot 3 \pi^{2}}}{2 \cdot 16}$
$\Rightarrow \tan ^{-1} x=\frac{\pi \pm 2 \pi}{4}$
$\Rightarrow \tan ^{-1} x=\frac{3 \pi}{4}, \frac{-\pi}{4}$
$\Rightarrow \tan ^{-1} x=\frac{-\pi}{4}$
$\Rightarrow x=-1$

Full Syllabus Test 1

10. If in a $\triangle A B C, \sin C+\cos C+\sin (2 B+C)-\cos (2 B+C)=2 \sqrt{2}$, then $\triangle A B C$ is
x A. isosceles
x B. equilateral
(v) C. right-angled isosceles
x D. right-angled but not isosceles
$\sin C+\cos C+\sin (2 B+C)-\cos (2 B+C)=2 \sqrt{2}$
$\Rightarrow \sin C+\sin (2 B+C)+\cos C-\cos (2 B+C)=2 \sqrt{2}$
$\Rightarrow 2 \sin (B+C) \cos B+2 \sin B \sin (B+C)=2 \sqrt{2}$
$\Rightarrow 2 \sin (\pi-A)[\cos B+\sin B]=2 \sqrt{2} \quad[\because A+B+C=\pi]$
$\Rightarrow \sin A\left[\sqrt{2}\left(\sin B \cdot \frac{1}{\sqrt{2}}+\cos B \cdot \frac{1}{\sqrt{2}}\right)\right]=\sqrt{2}$
$\Rightarrow \sin A \cdot \sin \left(B+\frac{\pi}{4}\right)=1$
It is possible only if $\sin A=1$ and $\sin \left(B+\frac{\pi}{4}\right)=1$
So, $A=\frac{\pi}{2}$ and $B+\frac{\pi}{4}=\frac{\pi}{2}$
$\Rightarrow A=\frac{\pi}{2}, B=C=\frac{\pi}{4}$

Full Syllabus Test 1

11. If the chords of the hyperbola $x^{2}-y^{2}=a^{2}$ touch the parabola $y^{2}=4 a x$, then the locus of the midpoints of the chords is the curve
x A. $y^{2}(x+a)=x^{3}$
($)$ B. $y^{2}(x-a)=x^{3}$
× C. $y^{2}(x+2 a)=3 x^{3}$
(D. $y^{2}(x-2 a)=2 x^{3}$
If $\left(x_{1}, y_{1}\right)$ is the midpoint of the chord to the hyperbola $x^{2}-y^{2}=a^{2}$, its equation is $T=S_{1}$
i.e., $x x_{1}-y y_{1}-a^{2}=x_{1}^{2}-y_{1}^{2}-a^{2}$
$\Rightarrow x x_{1}-y y_{1}=x_{1}^{2}-y_{1}^{2}$
$\Rightarrow y=\frac{x_{1}}{y_{1}} x+\frac{y_{1}^{2}-x_{1}^{2}}{y_{1}}$
If this is a tangent to $y^{2}=4 a x$,
then $c=\frac{a}{m}$
$\Rightarrow \frac{y_{1}^{2}-x_{1}^{2}}{y_{1}}=\frac{a y_{1}}{x_{1}}$
$\Rightarrow x_{1}^{3}=y_{1}^{2}\left(x_{1}-a\right)$
\therefore Locus of $\left(x_{1}, y_{1}\right)$ is $x^{3}=y^{2}(x-a)$

Full Syllabus Test 1

12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{3}+x^{2}+3 x+\sin x$. Then f is
(v) A. injective and surjective
x B. injective but not surjective
x C. surjective but not injective
x D. neither injective nor surjective
$f(x)=x^{3}+x^{2}+3 x+\sin x, x \in \mathbb{R}$
$f^{\prime}(x)=3 x^{2}+2 x+3+\cos x$
$f^{\prime}(x)=g(x)+\cos x$
$g(x)>0$ as $D=4-36=-32<0$
Range of g is $\left[\frac{-D}{4 a}, \infty\right)$
i.e., range of g is $\left[\frac{+32}{12}, \infty\right)=\left[\frac{8}{3}, \infty\right)$

Also, $-1 \leq \cos x \leq 1$
$\therefore f^{\prime}(x)>0$
Hence, function f is strictly increasing.
$\Rightarrow f$ is injective.
$\lim _{x \rightarrow \infty} f(x)=\infty$
and $\lim _{x \rightarrow-\infty} f(x)=-\infty$
Also, f is continuous over \mathbb{R}.
\Rightarrow Range of f is \mathbb{R}
$\therefore f$ is surjective.

Full Syllabus Test 1

13. If a variable tangent of the circle $x^{2}+y^{2}=1$ intersects the ellipse $x^{2}+2 y^{2}=4$ at points P and Q, then the locus of the point of intersection of tangent at P and Q is
x A. a circle of radius 2 units
X B. a parabola with focus at $(2,3)$
(C. an ellipse with latus rectum 2 units
X D. a hyperbola with eccentricity $\frac{3}{2}$
Let the intersection of the tangent at P and Q to the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ be $\left(x_{1}, y_{1}\right)$
Then the equation of $P Q$ is $T=0$
$\frac{x x_{1}}{4}+\frac{y y_{1}}{2}=1$
i.e., $y=-\frac{x x_{1}}{2 y_{1}}+\frac{2}{y_{1}}$

This is a tangent to the circle $x^{2}+y^{2}=1$
So, $c^{2}=a^{2}\left(1+m^{2}\right)$
$\Rightarrow \frac{4}{y_{1}^{2}}=1\left(1+\frac{x_{1}^{2}}{4 y_{1}^{2}}\right)$
$\Rightarrow 16=4 y_{1}^{2}+x_{1}^{2}$
$\Rightarrow \frac{x_{1}^{2}}{16}+\frac{y_{1}^{2}}{4}=1$
which is the equation of an ellipse.
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{8}{4}=2$

Full Syllabus Test 1

14. The two vectors $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+3 \hat{j}+5 \hat{k}$ represent the two sides $\overrightarrow{A B}$ and $\overrightarrow{A C}$ respectively of a triangle $A B C$. The length of the median through A is
x A. 7
X B. 14C. $\sqrt{14}$
x
D. $\frac{\sqrt{14}}{2}$

$\overrightarrow{A B}=\hat{i}+\hat{j}+\hat{k}$
$\overrightarrow{A C}=\hat{i}+3 \hat{j}+5 \hat{k}$
$\Rightarrow \overrightarrow{B C}=\overrightarrow{A C}-\overrightarrow{A B}=2 \hat{j}+4 \hat{k}$
Since D is the mid-point of $\overrightarrow{B C}$,
$\overrightarrow{B D}=\frac{\overrightarrow{B C}}{2}=\hat{j}+2 \hat{k}$
Now, in $\triangle A B D$,
$\overrightarrow{A D}=\overrightarrow{A B}+\overrightarrow{B D}=\hat{i}+2 \hat{j}+3 \hat{k}$
$\therefore|\overrightarrow{A D}|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}$

Full Syllabus Test 1

15. The logical statement $(p \rightarrow q) \rightarrow((\sim p \rightarrow q) \rightarrow q)$ isA. a tautology
\times
B. equivalent to $\sim p \rightarrow q$
\times
C. equivalent to $p \rightarrow \sim q$
\times
D. a fallacy

The truth table of given expression is given below

p	q	$x \equiv p \rightarrow q$	$\sim p$	$\sim p \rightarrow q$	$y \equiv(\sim p \rightarrow q) \rightarrow q$	$x \rightarrow y$
T	T	T	F	T	T	T
T	F	F	F	T	F	T
F	T	T	T	T	T	T
F	F	T	T	F	T	T

For all possible truth values of p and q, the statement $(p \rightarrow q) \rightarrow((\sim p \rightarrow q) \rightarrow q)$ is true.
Hence, the given statement is a tautology.

Full Syllabus Test 1

16. $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$ is equal toA. $e^{1 / 3}$
x B. 1
x C. e
(D) 0
$L=\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}} \quad\left[1^{\infty}\right.$ form $]$
$=\lim _{x \rightarrow 0}\left(1+\frac{\tan x}{x}-1\right)^{1 / x^{2}}$
$=\exp \left(\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}-1\right) \frac{1}{x^{2}}\right)$
$=\exp \left(\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}\right)$
$=\exp \left(\lim _{x \rightarrow 0} \frac{x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\cdots-x}{x^{3}}\right)$
$=\exp \left(\lim _{x \rightarrow 0} \frac{\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\cdots}{x^{3}}\right)$
$=e^{1 / 3}$

Full Syllabus Test 1

17. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\max \left\{x, x^{3}\right\}$. Then the set of all points where f is not differentiable, is
x A. $\{-1,0\}$
B. $\{-1,0,1\}$
\times C. $\{0,1\}$
\times
D. $\{-1,1\}$
$f(x)= \begin{cases}x, & -\infty<x \leq-1 \text { and } 0 \leq x \leq 1 \\ x^{3}, & -1<x<0 \text { and } x>1\end{cases}$
At $x=-1$,
$L H D=1, R H D=3 x^{2}=3$
At $x=0$,
$L H D=3 x^{2}=0, R H D=1$
At $x=1$,
$L H D=1, R H D=3 x^{2}=3$
Hence f is not differentiable at $-1,0,1$
Alternative solution :

Clearly, we can observe from the graph that the function f is not differentiable at $x=-1,0,1$

Full Syllabus Test 1

18.

Let $f(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$. Then
× A. f^{\prime} does not exist at $x=0$
(X) B. f^{\prime} exists and is continuous at $x=0$
C. f^{\prime} exists but not continuous at $x=0$
(D. f^{\prime} does not exist at any point
Clearly, $f^{\prime}(x)$ exists for all $x \neq 0$
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}}{h}$
$=\lim _{h \rightarrow 0} h \sin \frac{1}{h}=0$
$\therefore f^{\prime}(0)$ exists and equals 0
When $x \neq 0$,
$f^{\prime}(x)=-\cos \frac{1}{x}+2 x \sin \frac{1}{x}$
$\lim _{h \rightarrow 0} f^{\prime}\left(0^{-}\right)$and $\lim _{h \rightarrow 0} f^{\prime}\left(0^{+}\right)$do not exist.
Hence, f^{\prime} is not continuous at $x=0$

Full Syllabus Test 1

19. The area bounded by $y=x^{2}, y=[x+1], x \leq 1$ and the y-axis, where [.] represents the greatest integer function, isA. $\frac{2}{3}$
x
B. $\frac{1}{3}$
\times
C. $\frac{7}{3}$
\times
D. 1
$y=x^{2}, y=[x+1]=[x]+1$
For $0 \leq x<1, y=0+1=1$

Hence, the required area $=$ the shaded area
$=\int_{0}^{1} x d y=\int_{0}^{1} \sqrt{y} d y$
$=\frac{2}{3}$

Full Syllabus Test 1

20. The solution of the differential equation $y d x-x d y=y^{2} \tan \left(\frac{x}{y}\right) d x$ is
(C is constant of integration)
x A. $\frac{x}{y}=C e^{x}$B. $\sin \left(\frac{x}{y}\right)=C e^{x}$
x
C. $\cos \left(\frac{x}{y}\right)=C e^{x}$
x
D. $x=C y$
$y d x-x d y=y^{2} \tan \left(\frac{x}{y}\right) d x$
$\Rightarrow \cot \frac{x}{y}\left(\frac{y d x-x d y}{y^{2}}\right)=d x$
$\Rightarrow \cot \left(\frac{x}{y}\right) d\left(\frac{x}{y}\right)=d x$
Integrating both sides, we get
$\log \left(\sin \frac{x}{y}\right)=x+\log C$
$\Rightarrow \sin \frac{x}{y}=e^{x+\log C}=C e^{x}$
21. The total number of numbers greater than $4,00,000$ that can be formed by using the digits $0,2,2,4,4,5$ is

Accepted Answers
$90 \quad 90.0 \quad 90.00$
Solution:
Suppose, the six-digit number is denoted by $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$
For the number to be greater than $4,00,000$, a_{1} should be either 4 or 5 .

If a_{1} is 4 , then $a_{2} a_{3} a_{4} a_{5} a_{6}$ can be arranged in $\frac{5!}{2!}=60$ ways
If a_{1} is 5 , then $a_{2} a_{3} a_{4} a_{5} a_{6}$ can be arranged in $\frac{5!}{2!2!}=30$ ways
\therefore Total number of required numbers $=90$

Full Syllabus Test 1

22. Three persons A, B, C are to speak at a function along with 5 other persons.

If the persons speak in random order, the probability that A speaks before B and B speaks before C is $\frac{p}{q}$, where p, q are co-prime. Then $p+q$ is

Accepted Answers

$\begin{array}{lll}7 & 7.0 & 7.00\end{array}$
Solution:
Total number of ways in which 8 persons can speak is 8 !
Number of ways in which A, B and C can be arranged in the specified speak order is ${ }^{8} C_{3} \times 1$ as the order of A, B, C is already fixed.
Remaining 5 persons can speak in 5 ! ways.
So the favourable number of ways $={ }^{8} C_{3} \times 5$!
Hence, required probability $=\frac{{ }^{8} C_{3} \times 5!}{8!}=\frac{1}{6}$
23. If $x=\log _{24} 12, y=\log _{36} 24$ and $z=\log _{48} 36$, then $(1+x y z)$ equals k times $y z$. The value of k is

Accepted Answers
$2 \quad 2.0$
2.00

Solution:
$1+x y z=1+\frac{\log 12}{\log 24} \cdot \frac{\log 24}{\log 36} \cdot \frac{\log 36}{\log 48}$
$=1+\frac{\log 12}{\log 48}$
$=\frac{\log (48 \times 12)}{\log 48}=\frac{\log (24)^{2}}{\log 48}=\frac{2 \log 24}{\log 48}$
$=2 \cdot \frac{\log 24}{\log 36} \cdot \frac{\log 36}{\log 48}$
$=2 y z=k y z$
Hence, $k=2$

Full Syllabus Test 1

24. The plane $P_{1}: 4 x+7 y+4 z+81=0$ is rotated through a right angle about its line of intersection with the plane $P_{2}: 5 x+3 y+10 z=25$. If the plane in its new position be denoted by P and the distance of plane P from the origin is d units, then the value of $[d / 2]$, where [.] represents the greatest integer function, is

Accepted Answers
$\begin{array}{lll}7 & 7.0 & 7.00\end{array}$
Solution:
$P_{1}: 4 x+7 y+4 z+81=0$
$P_{2}: 5 x+3 y+10 z=25$
Equation of plane passing through line of intersection of P_{1} and P_{2} is
$P:(4 x+7 y+4 z+81)+\lambda(5 x+3 y+10 z-25)=0$
$\Rightarrow(4+5 \lambda) x+(7+3 \lambda) y+(4+10 \lambda) z+81-25 \lambda=0$
This plane is perpendicular to P_{1}.
So $4(4+5 \lambda)+7(7+3 \lambda)+4(4+10 \lambda)=0$
$\Rightarrow \lambda=-1$
Hence, equation of the plane P is $-x+4 y-6 z+106=0$
Distance of plane P from $(0,0,0)$ is
$d=\frac{106}{\sqrt{1+16+36}}=\frac{106}{\sqrt{53}}$
Thus, $[d / 2]=7$

Full Syllabus Test 1

25.

If $\int_{\ln 2}^{k} \frac{1}{\sqrt{e^{x}-1}} d x=\frac{\pi}{6}$, then $k=\ln p$. The value of $p+1$ is
Accepted Answers

$5 \quad 5.0 \quad 5.00$

Solution:
$\int_{\ln 2}^{k} \frac{1}{\sqrt{e^{x}-1}} d x$
Let $e^{x}-1=t^{2}$
$\Rightarrow e^{x} d x=2 t d t$
$\Rightarrow d x=\frac{2 t}{t^{2}+1} d t$
$\therefore \int \frac{1}{\sqrt{e^{x}-1}} d x$
$=\int \frac{2}{t^{2}+1} d t=2 \tan ^{-1} t$
Now, $\int_{\ln 2}^{k} \frac{1}{\sqrt{e^{x}-1}} d x=\frac{\pi}{6}$
$\Rightarrow 2 \tan ^{-1} \sqrt{e^{k}-1}-2 \tan ^{-1} \sqrt{e^{\ln 2}-1}=\frac{\pi}{6}$
$\Rightarrow 2 \tan ^{-1} \sqrt{e^{k}-1}-2 \tan ^{-1} 1=\frac{\pi}{6}$
$\Rightarrow 2 \tan ^{-1} \sqrt{e^{k}-1}-\frac{\pi}{2}=\frac{\pi}{6}$
$\Rightarrow \tan ^{-1} \sqrt{e^{k}-1}=\frac{\pi}{3}$
$\Rightarrow \sqrt{e^{k}-1}=\sqrt{3}$
$\Rightarrow e^{k}=4$
$\Rightarrow k=\ln 4$
Thus $p=4$
$\Rightarrow p+1=5$

Full Syllabus Test 1

26. If the mean and variance of eight numbers $3,7,9,12,13,20, x$ and y be 10 and 25 respectively, then $x y$ is equal to

Accepted Answers

$54 \quad 54.0 \quad 54.00$
Solution:
Mean $=\frac{64+x+y}{8}=10$
$\Rightarrow x+y=16$
Variance $=\frac{\sum x_{i}^{2}}{n}-(\bar{x})^{2}$
$\Rightarrow 25=\frac{3^{2}+7^{2}+9^{2}+12^{2}+13^{2}+20^{2}+x^{2}+y^{2}}{8}-100$
$\Rightarrow 1000=852+x^{2}+y^{2}$
$\Rightarrow x^{2}+y^{2}=148$
$\Rightarrow(x+y)^{2}-2 x y=148$
$\Rightarrow 256-2 x y=148$
$\therefore x y=54$

Full Syllabus Test 1

27. The distance from the origin to the normal of the curve $x=2 \cos t+2 t \sin t$, $y=2 \sin t-2 t \cos t$ at $t=\frac{\pi}{4}$ is

Accepted Answers
$2 \quad 2.0 \quad 2.00$
Solution:
$x=2 \cos t+2 t \sin t$
$\frac{d x}{d t}=2 t \cos t$
$y=2 \sin t-2 t \cos t$
$\frac{d y}{d t}=2 t \sin t$
$\Rightarrow \frac{d y}{d x}=\tan t$
So, slope of normal at $t=\frac{\pi}{4}$ is $-\frac{1}{\tan t}=-1$
At $t=\frac{\pi}{4}, x=\sqrt{2}\left(1+\frac{\pi}{4}\right)$ and $y=\sqrt{2}\left(1-\frac{\pi}{4}\right)$
Hence, equation of normal at $t=\frac{\pi}{4}$ is $x+y-2 \sqrt{2}=0$
Distance of normal from the origin $=\left|\frac{-2 \sqrt{2}}{\sqrt{1+1}}\right|=2$ units
28.

$$
\text { If } y=\frac{\sin x}{1+\frac{\cos x}{1+\frac{\sin x}{1+\frac{\cos x}{1+\cdots \infty}}}} \text {, then } \frac{d x}{d y} \text { at } x=\frac{\pi}{2} \text { is }
$$

Accepted Answers

$$
\begin{array}{lll}
2 & 2.0 & 2.00
\end{array}
$$

Solution:
$y=\frac{\sin x}{1+\frac{\cos x}{1+y}}$
$\Rightarrow y=\frac{(1+y) \sin x}{1+y+\cos x}$
$\Rightarrow y+y^{2}+y \cos x=\sin x+y \sin x$
$\Rightarrow \frac{d y}{d x}+2 y \frac{d y}{d x}+y(-\sin x)+\cos x \frac{d y}{d x}=\cos x+y \cos x+\sin x \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}(1+2 y+\cos x-\sin x)=y \sin x+(1+y) \cos x$
$\Rightarrow \frac{d y}{d x}=\frac{y \sin x+(1+y) \cos x}{1+2 y+\cos x-\sin x}$
At $x=\frac{\pi}{2}$,
$\frac{d y}{d x}=\frac{y}{2 y}=\frac{1}{2}$
$\Rightarrow \frac{d x}{d y}=2$

Full Syllabus Test 1

29. If $f(x)=\int \frac{2 x^{5}+5 x^{4}}{\left(4+2 x+3 x^{5}\right)^{2}} d x,(x \geq 0)$ and $f(0)=0$, then the value of
$72 \cdot f(1)$ is
Accepted Answers
$2 \quad 2.0 \quad 2.00$
Solution:
Given : $f(x)=\int \frac{2 x^{5}+5 x^{4}}{\left(4+2 x+3 x^{5}\right)^{2}} d x$
Taking x^{10} common from numerator and denominator, we get
$f(x)=\int \frac{2 x^{-5}+5 x^{-6}}{\left(4 x^{-5}+2 x^{-4}+3\right)^{2}} d x$
Taking $4 x^{-5}+2 x^{-4}+3=z$
$\Rightarrow\left(-20 x^{-6}-8 x^{-5}\right) d x=d z$
$\Rightarrow f(z)=-\frac{1}{4} \int \frac{d z}{z^{2}}=\frac{1}{4 z}+C$
$\Rightarrow f(x)=\frac{x^{5}}{4\left(3 x^{5}+2 x+4\right)}+C$
As $f(0)=0 \Rightarrow C=0$
So, $72 \cdot f(1)=72 \times \frac{1}{36}=2$

Full Syllabus Test 1

30. In triangle $A B C, \angle B=\frac{\pi}{3}$ and $\angle C=\frac{\pi}{4}$. Let D divide $B C$ internally in the ratio 1:3 and the angles $\angle B A D=\theta, \angle C A D=\phi$. The value of $\frac{\sin ^{2} \phi}{\sin ^{2} \theta}=$ Accepted Answers
$\begin{array}{llll}6 & 6.0 & 6.00 & 06\end{array}$
Solution:

Using sine rule in $\triangle A B D$,
$\frac{\sin \theta}{B D}=\frac{\sin 60^{\circ}}{A D}$
$\Rightarrow \frac{A D}{B D}=\frac{\sin 60^{\circ}}{\sin \theta}$
Using sine rule in $\triangle A C D$,
$\frac{\sin \phi}{D C}=\frac{\sin 45^{\circ}}{A D}$
$\Rightarrow \frac{D C}{A D}=\frac{\sin \phi}{\sin 45^{\circ}}$
Multiplying equation (i), (ii), we get
$\frac{D C}{B D}=\frac{\sin 60^{\circ} \sin \phi}{\sin 45^{\circ} \sin \theta}$
Hence, $\frac{\sin ^{2} \phi}{\sin ^{2} \theta}=6$

