

Subject: Mathematics

- 1. The values of a for which the number 6 lies in between the roots of the equation $x^2+2(a-3)x+9=0$, belong to
 - \mathbf{x} A. $\left(\frac{3}{4}\right)$
 - lacksquare B. $\left(-\infty, -rac{3}{4}
 ight)$
 - $oldsymbol{\mathsf{x}}$ **c.** $(-\infty,0)\cup(6,\infty)$
 - $lackbox{\textbf{D}}.\quad (-\infty,0)\cup(3,\infty)$

 $f(x)=x^2+2(a-3)x+9$ is a parabola facing upwards as shown in the figure.

Let the roots be α and β with $\alpha<\beta$

If 6 lies between α and β ,

$$\Rightarrow (6)^2 + 2(a-3)(6) + 9 < 0$$

$$\Rightarrow 12a + 9 < 0$$

$$\Rightarrow a < -\frac{3}{4}$$

2. The line 4x - 3y + 2 = 0 is rotated through an angle of $\frac{\pi}{4}$ in clockwise direction about the point (1,2). The equation of the line in its new position is

A.
$$x - 7y + 13 = 0$$

B.
$$y-7x+5=0$$

C.
$$x + 7y - 15 = 0$$

X D.
$$y + 7x - 15 = 0$$

$$(1,2)$$
 lies on the line $4x-3y+2=0$
The slope of the given line is $an heta = rac{4}{3}$
Let the slope of the new line be m .
Angle between these two lines is 45°

$$\Rightarrow an 45^\circ = \left| rac{rac{4}{3} - m}{1 + rac{4}{3} m}
ight| \ \Rightarrow rac{4 - 3m}{3 + 4m} = \pm 1 \ \Rightarrow 4 - 3m = \pm (3 + 4m) \ \Rightarrow m = rac{1}{7} \quad (m = -7 ext{ rejected})$$

Required equation of line is

$$y-2=rac{1}{7}(x-1) \ \Rightarrow x-7y+13=0$$

- 3. The circle passing through (1,-2) and touching the x-axis at (3,0) also passes through the point
 - **A.** (-2, -2)
 - **B.** (2,-5)
 - lacksquare **c.** (5,-2)
 - lacktriangle D. (-2,5)

As the circle is touching the x-axis at (3,0),

let the centre of the circle be C(3, k)

Radius, r = |k|

Equation of the circle is $(x-3)^2 + (y-k)^2 = k^2$

Above circle passes through (1,-2).

Then,
$$(1-3)^2 + (-2-k)^2 = k^2$$

$$\Rightarrow k = -2$$

Hence, equation of the circle is $(x-3)^2+(y+2)^2=4$

Clearly, (5, -2) satisfies it.

- 4. Let the coefficients of powers of x in the second, third and fourth terms in the binomial expansion of $(1+x)^n$, where n is a positive integer, be in arithmetic progression. The sum of the coefficients of odd powers of x in the expansion is
 - **x** A. ₃₂
 - **B.** 64
 - **(x) c**. ₁₂₈
 - **x** D. 256

Given that ${}^{n}C_{1},\ {}^{n}C_{2},\ {}^{n}C_{3}$ are in A.P.

$$ightarrow 2^n C_2 = ^n C_1 + ^n C_3 \
ightarrow rac{2n(n-1)}{2} = n + rac{n(n-1)(n-2)}{6} \
ightarrow n^2 - 9n + 14 = 0 \
ightarrow n = 7 \quad [n=2 ext{ rejected}]$$

Sum of the coefficients of odd powers of x in the expansion is $2^{n-1}=2^6=64$

- If the imaginary part of $\frac{2z+1}{iz+1}$ is -2, then the locus of z is
 - a circle
 - a straight line
 - an ellipse
 - D. a parabola

Let
$$z = x + iy$$

Let
$$z=x+iy$$

$$\frac{2z+1}{iz+1}=\frac{2(x+iy)+1}{i(x+iy)+1}$$

$$=rac{(2x+1)+2iy}{(1-y)+ix} imesrac{(1-y)-ix}{(1-y)-ix}$$

$$=rac{(2x+1)+2iy}{(1-y)^2+x^2} imes \{(1-y)-ix\}$$

$$\therefore \text{ Imaginary part} \\ = \frac{2y(1-y)-x(2x+1)}{(1-y)^2+x^2} = -2 \\ \Rightarrow 2y-2y^2-2x^2-x=-2x^2-2+4y-2y^2 \\ \Rightarrow x+2y-2=0 \text{ which is a straight line.}$$

$$\Rightarrow 2y - 2y^2 - 2x^2 - x = -2x^2 - 2 + 4y - 2y^2$$

- 6. A geometric progression with common ratio r, consists of an even number of terms. If the sum of all terms is 5 times the sum of the terms occupying the odd places, then $\sum_{i=1}^4 (ir)^2$ is
 - **A**. 1456
 - **B**. 120
 - **x** c. ₁₁₇₂
 - **D.** 480

Let the G.P. be $a,ar,ar^2,\ldots,ar^{2n-1}.$ Then, $S_{2n}=5(a+ar^2+\cdots+n ext{ terms})$ $\Rightarrow rac{a}{1-r}(1-r^{2n})=5\cdotrac{a}{1-r^2}ig(1-(r^2)^nig)$ $\Rightarrow r+1=5$ $\Rightarrow r=4$

Now,
$$\sum_{i=1}^4 (ir)^2$$

$$= 16 \sum_{i=1}^4 i^2$$

$$= 16 imes rac{4 imes 5 imes 9}{6}$$

$$= 480$$

 $|a^2+x \qquad ab \qquad \quad ac$ 7. If a, b, c, x are positive integers, then $\begin{vmatrix} ab & b^2 + x & bc \end{vmatrix}$ is divisible by bc $c^2 + x$

$$lacksquare$$
 B. x^3

$$\mathbf{x}$$
 C. x^4

D.
$$a^2 + b^2 + c^2$$

$$\Delta = egin{array}{cccc} a^2 + x & ab & ac \ ab & b^2 + x & bc \ ac & bc & c^2 + x \ \end{array}$$

$$=rac{1}{abc}igg|egin{array}{cccc} a^3 + ax & a^2b & a^2c \ ab^2 & b^3 + bx & b^2c \ ac^2 & bc^2 & c^3 + cx \ \end{array}$$

$$= egin{array}{ccccc} a^2 + x & a^2 & a^2 \ b^2 & b^2 + x & b^2 \ c^2 & c^2 & c^2 + x \ \end{array}$$

Applying
$$R_1 o R_1+R_2+R_3, \ |a^2+b^2+c^2+x-a^2+b^2+c^2+x-a^2+b^2+c$$

$$\Delta = egin{align*} \mathsf{Applying} \ R_1
ightarrow R_1 + R_2 + R_3, \ \Delta = egin{align*} a^2 + b^2 + c^2 + x & a^2 + b^2 + c^2 + x & a^2 + b^2 + c^2 + x \ b^2 & b^2 + x & b^2 \ c^2 & c^2 & c^2 + x \ \end{bmatrix}$$

$$=(a^2+b^2+c^2+x)egin{array}{cccc} 1 & 1 & 1 \ b^2 & b^2+x & b^2 \ c^2 & c^2 & c^2+x \ \end{array}$$

Applying
$$C_2
ightarrow C_2 - C_1$$
 and $C_3
ightarrow C_3 - C_1$

Applying
$$C_2 o C_2-C_1$$
 and $C_3 o C_3-C_1$ $\Delta=(a^2+b^2+c^2+x)egin{pmatrix}1&0&0\b^2&x&0\c^2&0&x\end{pmatrix}$

$$= (a^2 + b^2 + c^2 + x)x^2$$

 \therefore determinant is divisible by x^2

- 8. An open cylindrical can has to be made with 100 square units of tin. If its volume is maximum, then the ratio of its base radius and the height is
 - **A**. 2:1
 - **⊘** B. 1:1
 - **x** c. 1:2
 - **x D**. $\sqrt{2}:1$

Let r be the base radius and h be the height of the cylinder.

Then, $2\pi rh + \pi r^2 = 100$

$$\Rightarrow h = rac{50}{\pi r} - rac{r}{2}$$

Volume of cylinder, $V=\pi r^2 h=\pi r^2 \left(rac{50}{\pi r}-rac{r}{2}
ight)=50r-rac{\pi r^3}{2}$

$$\frac{dV}{dr} = 50 - \frac{3\pi r^2}{2}$$

$$\frac{dV}{dr} = 0$$

$$\Rightarrow r = \frac{10}{\sqrt{3\pi}}$$

$$rac{d^2V}{dr^2} = -3\pi r < 0 ext{ at } r = rac{10}{\sqrt{3\pi}}$$

Hence, V is maximum when $r=\frac{10}{\sqrt{3\pi}}$

$$\therefore h = \frac{50}{\pi \cdot \frac{10}{\sqrt{3\pi}}} - \frac{10}{2\sqrt{3\pi}} = \frac{10}{\sqrt{3\pi}}$$

So, when \dot{V} is maximum, r:h=1:1

- If $(\tan^{-1}x)^2+(\cot^{-1}x)^2=rac{5\pi^2}{8}$, then the sum of the solutions in x is

 - x D. not finite

$$(an^{-1} x)^2 + (\cot^{-1} x)^2 = rac{5\pi^2}{8}$$

Since
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

So,
$$(\tan^{-1}x)^2 + \left(\frac{\pi}{2} - \tan^{-1}x\right)^2 = \frac{5\pi^2}{8}$$

$$\Rightarrow (\tan^{-1}x)^2 + \frac{\pi^2}{4} - \pi \tan^{-1}x + (\tan^{-1}x)^2 = \frac{5\pi^2}{8}$$

$$\Rightarrow 2(\tan^{-1}x)^2 - \pi \tan^{-1}x + \frac{\pi^2}{4} - \frac{5\pi^2}{8} = 0$$

$$\Rightarrow 16(\tan^{-1}x)^2 - 8\pi \tan^{-1}x - 3\pi^2 = 0$$

Above equation is quadratic in
$$\tan^{-1}x$$

$$\tan^{-1}x = \frac{8\pi \pm \sqrt{64\pi^2 + 64 \cdot 3\pi^2}}{2 \cdot 16}$$

$$\Rightarrow \tan^{-1}x = \frac{\pi \pm 2\pi}{4}$$

$$\Rightarrow an^{-1} x = rac{\pi \pm 2\pi}{4}$$

$$\Rightarrow an^{-1} x = rac{3\pi}{4}, rac{-\pi}{4}$$

$$\Rightarrow \tan^{-1} x = \frac{-\pi}{4}$$

$$\Rightarrow x = -1$$

- 10. If in a $\triangle ABC$, $\sin C + \cos C + \sin(2B+C) \cos(2B+C) = 2\sqrt{2}$, then $\triangle ABC$ is
 - **x** A. isosceles
 - **B.** equilateral
 - C. right-angled isosceles
 - D. right-angled but not isosceles

$$\sin C + \cos C + \sin(2B+C) - \cos(2B+C) = 2\sqrt{2}$$

$$\Rightarrow \sin C + \sin(2B+C) + \cos C - \cos(2B+C) = 2\sqrt{2}$$

$$\Rightarrow 2\sin(B+C)\cos B + 2\sin B\sin(B+C) = 2\sqrt{2}$$

$$\Rightarrow 2\sin(\pi - A)[\cos B + \sin B] = 2\sqrt{2} \quad [\because A + B + C = \pi]$$

$$\Rightarrow \sin A \left\lceil \sqrt{2} \left(\sin B \cdot rac{1}{\sqrt{2}} + \cos B \cdot rac{1}{\sqrt{2}}
ight)
ight
ceil = \sqrt{2}$$

$$\Rightarrow \sin A \cdot \sin \left(B + \frac{\pi}{4} \right) = 1$$

It is possible only if
$$\sin A = 1$$
 and $\sin \left(B + \frac{\pi}{4} \right) = 1$

So,
$$A=\frac{\pi}{2}$$
 and $B+\frac{\pi}{4}=\frac{\pi}{2}$ $\Rightarrow A=\frac{\pi}{2},\ B=C=\frac{\pi}{4}$

11. If the chords of the hyperbola $x^2 - y^2 = a^2$ touch the parabola $y^2 = 4ax$, then the locus of the midpoints of the chords is the curve

A.
$$y^2(x+a) = x^3$$

B.
$$y^2(x-a) = x^3$$

C.
$$y^2(x+2a)=3x^3$$

D.
$$y^2(x-2a)=2x^3$$

If (x_1, y_1) is the midpoint of the chord to the hyperbola $x^2 - y^2 = a^2$,

its equation is
$$T=S_1$$

i.e., $xx_1-yy_1-a^2=x_1^2-y_1^2-a^2$
 $\Rightarrow xx_1-yy_1=x_1^2-y_1^2$
 $\Rightarrow y=\frac{x_1}{y_1}x+\frac{y_1^2-x_1^2}{y_1}$

If this is a tangent to $y^2 = 4ax$,

then
$$c=\frac{a}{m}$$

$$\Rightarrow \frac{y_1^2-x_1^2}{y_1}=\frac{ay_1}{x_1}$$

$$\Rightarrow x_1^3=y_1^2(x_1-a)$$

$$\therefore \text{Locus of } (x_1,y_1) \text{ is } x^3-y^2$$

 \therefore Locus of (x_1,y_1) is $x^3=y^2(x-a)$

12. Let $f:\mathbb{R} o \mathbb{R}$ be a function defined by $f(x) = x^3 + x^2 + 3x + \sin x$. Then f is

B. injective but not surjective

C. surjective but not injective

x D. neither injective nor surjective

$$f(x) = x^3 + x^2 + 3x + \sin x, \; x \in \mathbb{R} \ f'(x) = 3x^2 + 2x + 3 + \cos x$$

 $f'(x) = g(x) + \cos x$

$$g(x)>0$$
 as $D=4-36=-32<0$

Range of g is $\left[\frac{-D}{4a}, \infty\right)$

i.e., range of
$$g$$
 is $\left[\frac{+32}{12},\infty\right)=\left[\frac{8}{3},\infty\right)$

Also, $-1 \le \cos x \le 1$ $\therefore f'(x) > 0$

Hence, function f is strictly increasing. $\Rightarrow f$ is injective.

$$\lim_{x o\infty}f(x)=\infty$$
 and $\lim_{x o-\infty}f(x)=-\infty$

Also, f is continuous over \mathbb{R} .

 \Rightarrow Range of f is $\mathbb R$

 $\therefore f$ is surjective.

- 13. If a variable tangent of the circle $x^2 + y^2 = 1$ intersects the ellipse $x^2 + 2y^2 = 4$ at points P and Q, then the locus of the point of intersection of tangent at P and Q is
 - a circle of radius 2 units
 - a parabola with focus at (2,3)
 - an ellipse with latus rectum 2 units
 - **D.** a hyperbola with eccentricity $\frac{3}{2}$

Let the intersection of the tangent at P and Q to the ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$ be (x_1, y_1)

Then the equation of PQ is T=0

$$rac{xx_1}{4}+rac{yy_1}{2}=1$$
 i.e., $y=-rac{xx_1}{2y_1}+rac{2}{y_1}$

This is a tangent to the circle $x^2+y^2=1$

So,
$$c^2=a^2(1+m^2)$$

$$\Rightarrow \frac{4}{y_1^2} = 1 \left(1 + \frac{x_1^2}{4y_1^2} \right)$$
$$\Rightarrow 16 - 4u^2 + x^2$$

$$\Rightarrow 16 = 4y_1^2 + x_1^2$$

$$\Rightarrow rac{x_1^2}{16} + rac{y_1^2}{4} = 1$$

which is the equation of an ellipse.

Length of latus rectum $=\frac{2b^2}{a}=\frac{8}{4}=2$

- The two vectors $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+3\hat{j}+5\hat{k}$ represent the two sides \overrightarrow{AB} and \overrightarrow{AC} respectively of a triangle ABC. The length of the median through A is

$$\begin{split} \overrightarrow{AB} &= \hat{i} + \hat{j} + \hat{k} \\ \overrightarrow{AC} &= \hat{i} + 3\hat{j} + 5\hat{k} \\ \Rightarrow \overrightarrow{BC} &= \overrightarrow{AC} - \overrightarrow{AB} = 2\hat{j} + 4\hat{k} \end{split}$$

Since D is the mid-point of \overrightarrow{BC} ,

$$\overrightarrow{BD} = rac{\overrightarrow{BC}}{2} = \hat{j} + 2\hat{k}$$

Now, in
$$\triangle ABD$$
, $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \hat{i} + 2\hat{j} + 3\hat{k}$
 $\therefore |\overrightarrow{AD}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$

$$\therefore |\overrightarrow{AD}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

15. The logical statement $(p
ightarrow q)
ightarrow ig((\sim p
ightarrow q)
ightarrow qig)$ is

A. a tautology

 $oldsymbol{\mathsf{x}}$ $oldsymbol{\mathsf{B}}$. equivalent to $\sim p
ightarrow q$

 $oldsymbol{\mathsf{x}}$ $oldsymbol{\mathsf{c}}$. equivalent to $p o\sim q$

x D. a fallacy

The truth table of given expression is given below

p	q	$x\equiv p o q$	$\sim p$	$\sim p ightarrow q$	$y \equiv (\sim p ightarrow q) ightarrow q$	x o y
T	T	T	F	T	T	T
T	F	F	F	T	F	T
F	T	T	T	T	T	T
F	F	T	T	F	T	T

For all possible truth values of p and q, the statement $(p \to q) \to \left((\sim p \to q) \to q\right)$ is true.

Hence, the given statement is a tautology.

16.
$$\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{1/x^2}$$
 is equal to

A.
$$e^{1/3}$$

$$L = \lim_{x o 0} \left(rac{ an x}{x}
ight)^{1/x^2} \quad [1^\infty ext{ form}]$$

$$=\lim_{x o 0}\left(1+rac{ an x}{x}-1
ight)^{1/x^2}$$

$$= \exp\biggl(\lim_{x\to 0} \left(\frac{\tan x}{x} - 1\right) \frac{1}{x^2}\biggr)$$

$$=\exp\!\left(\lim_{x o 0}\!rac{ an x-x}{x^3}
ight)$$

$$=\exp\left(\lim_{x o 0}rac{x+rac{1}{3}x^3+rac{2}{15}x^5+\cdots-x}{x^3}
ight)$$

$$=\exp\left(\lim_{x o 0}rac{rac{1}{3}x^3+rac{2}{15}x^5+\cdots}{x^3}
ight)$$

$$= e^{1/3}$$

17. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \max\left\{x, \ x^3\right\}$. Then the set of all points where f is not differentiable, is

A.
$$\{-1,0\}$$

B.
$$\{-1,0,1\}$$

$$\mathbf{x}$$
 c. $\{0,1\}$

$$lackbox{ D. } \{-1,1\}$$

$$f(x) = \left\{egin{array}{ll} x, & -\infty < x \leq -1 ext{ and } 0 \leq x \leq 1 \ x^3, & -1 < x < 0 ext{ and } x > 1 \end{array}
ight.$$

At
$$x = -1$$
,
 $LHD = 1$, $RHD = 3x^2 = 3$

$$\begin{array}{l} \mathsf{At}\; x=0, \\ LHD=3x^2=0,\; RHD=1 \end{array}$$

At
$$x=1,$$
 $LHD=1,\ RHD=3x^2=3$ Hence f is not differentiable at $-1,0,1$

Alternative solution:

Clearly, we can observe from the graph that the function f is not differentiable at x=-1,0,1

18. Let
$$f(x)=\left\{egin{array}{ll} x^2\sinrac{1}{x}, & x
eq 0 \ 0, & x=0 \end{array}
ight.$$
 . Then

- $m{\mathsf{A}}.\quad f' ext{ does not exist at } x=0$
- $oldsymbol{\mathsf{x}}$ $oldsymbol{\mathsf{B}}$. f' exists and is continuous at x=0
- **C.** f' exists but not continuous at x = 0
- lackbox **D.** f' does not exist at any point

Clearly, f'(x) exists for all $x \neq 0$

$$f'(0) = \lim_{h o 0} rac{f(h) - f(0)}{h} = \lim_{h o 0} rac{h^2 \sin rac{1}{h}}{h}$$
 $= \lim_{h o 0} h \sin rac{1}{h} = 0$
 $\therefore f'(0)$ exists and equals 0

When
$$x \neq 0$$
,

$$f'(x)=-\cosrac{1}{x}+2x\sinrac{1}{x} \ \lim_{h o 0}f'(0^-)$$
 and $\lim_{h o 0}f'(0^+)$ do not exist.

Hence, f' is not continuous at x=0

- 19. The area bounded by $y=x^2, y=[x+1], x \le 1$ and the y-axis, where [.] represents the greatest integer function, is
 - igwedge A. $\frac{2}{3}$
 - **x** B. $\frac{1}{3}$
 - \mathbf{x} c. $\frac{7}{3}$
 - **(x)** D. ₁

 $y=x^2, \ y=[x+1]=[x]+1$ For $0 \leq x < 1, \ y=0+1=1$

Hence, the required area = the shaded area

$$=\int\limits_0^1 x dy = \int\limits_0^1 \sqrt{y} \ dy \ = rac{2}{3}$$

20. The solution of the differential equation $ydx - xdy = y^2 \tan\left(\frac{x}{y}\right) dx$ is (C is constant of integration)

$$\mathbf{x}$$
 \mathbf{c} . $\cos\left(\frac{x}{y}\right) = Ce^x$

$$lackbox{ D. } x = Cy$$

$$ydx-xdy=y^2 anigg(rac{x}{y}igg)dx$$

$$\Rightarrow \cot \frac{x}{y} \left(\frac{ydx - xdy}{y^2} \right) = dx$$

$$\Rightarrow\cot\left(rac{x}{y}
ight)d\left(rac{x}{y}
ight)=dx$$

Integrating both sides, we get

$$\log\left(\sin\frac{x}{y}\right) = x + \log C$$

 $\Rightarrow \sin\frac{x}{y} = e^{x + \log C} = Ce^x$

21. The total number of numbers greater than 4,00,000 that can be formed by using the digits 0,2,2,4,4,5 is

Accepted Answers

90 90.0 90.00

Solution:

Suppose, the six-digit number is denoted by $a_1a_2a_3a_4a_5a_6$ For the number to be greater than 4,00,000, a_1 should be either 4 or 5.

If a_1 is 4, then $a_2a_3a_4a_5a_6$ can be arranged in $\cfrac{5!}{2!}=60$ ways If a_1 is 5, then $a_2a_3a_4a_5a_6$ can be arranged in $\cfrac{5!}{2!}=30$ ways

 \therefore Total number of required numbers =90

22. Three persons A,B,C are to speak at a function along with 5 other persons. If the persons speak in random order, the probability that A speaks before B and B speaks before C is $\frac{p}{q}$, where p,q are co-prime. Then p+q is

Accepted Answers

Solution:

Total number of ways in which 8 persons can speak is 8!

Number of ways in which A,B and C can be arranged in the specified speak order is ${}^8C_3 \times 1$ as the order of A,B,C is already fixed.

Remaining 5 persons can speak in 5! ways.

So the favourable number of ways $= {}^8C_3 \times 5!$

Hence, required probability =
$$\frac{{}^{8}C_{3} \times 5!}{8!} = \frac{1}{6}$$

23. If $x=\log_{24}12,\,y=\log_{36}24$ and $z=\log_{48}36,$ then (1+xyz) equals k times yz. The value of k is

Accepted Answers

$$egin{align*} 1+xyz&=1+rac{\log 12}{\log 24}\cdotrac{\log 24}{\log 36}\cdotrac{\log 36}{\log 48} \ &=1+rac{\log 12}{\log 48} \ &=rac{\log (48 imes 12)}{\log 48}=rac{\log (24)^2}{\log 48}=rac{2\log 24}{\log 48} \ &=2\cdotrac{\log 24}{\log 36}\cdotrac{\log 36}{\log 48} \ &=2yz=kyz \ &= 2kyz \ &=$$

BYJU'S The Learning App

Full Syllabus Test 1

24. The plane $P_1: 4x+7y+4z+81=0$ is rotated through a right angle about its line of intersection with the plane $P_2: 5x+3y+10z=25$. If the plane in its new position be denoted by P and the distance of plane P from the origin is d units, then the value of $\lfloor d/2 \rfloor$, where $\lfloor . \rfloor$ represents the greatest integer function, is

Accepted Answers

Solution:

$$P_1: 4x + 7y + 4z + 81 = 0$$

 $P_2: 5x + 3y + 10z = 25$

Equation of plane passing through line of intersection of P_1 and P_2 is

$$P: (4x + 7y + 4z + 81) + \lambda(5x + 3y + 10z - 25) = 0$$

 $\Rightarrow (4 + 5\lambda)x + (7 + 3\lambda)y + (4 + 10\lambda)z + 81 - 25\lambda = 0$

This plane is perpendicular to P_1 .

So
$$4(4+5\lambda)+7(7+3\lambda)+4(4+10\lambda)=0$$

 $\Rightarrow \lambda=-1$

Hence, equation of the plane P is -x + 4y - 6z + 106 = 0

Distance of plane P from (0,0,0) is

$$d = \frac{106}{\sqrt{1 + 16 + 36}} = \frac{106}{\sqrt{53}}$$

Thus,
$$[d/2] = 7$$

25. If
$$\int\limits_{\ln 2}^k rac{1}{\sqrt{e^x-1}} dx = rac{\pi}{6}$$
, then $k=\ln p$. The value of $p+1$ is

Accepted Answers

$$egin{aligned} \int\limits_{\ln 2}^k rac{1}{\sqrt{e^x-1}} dx \ \operatorname{Let} \, e^x - 1 &= t^2 \ \Rightarrow e^x dx &= 2t dt \ \Rightarrow dx &= rac{2t}{t^2+1} dt \end{aligned}$$

$$\therefore \int \frac{1}{\sqrt{e^x - 1}} dx$$

$$= \int \frac{2}{t^2 + 1} dt = 2 \tan^{-1} t$$

Now,
$$\int_{\ln 2}^{k} \frac{1}{\sqrt{e^x - 1}} dx = \frac{\pi}{6}$$

$$\Rightarrow 2 \tan^{-1} \sqrt{e^k - 1} - 2 \tan^{-1} \sqrt{e^{\ln 2} - 1} = \frac{\pi}{6}$$

$$\Rightarrow 2 \tan^{-1} \sqrt{e^k - 1} - 2 \tan^{-1} 1 = \frac{\pi}{6}$$

$$\Rightarrow 2 \tan^{-1} \sqrt{e^k - 1} - \frac{\pi}{2} = \frac{\pi}{6}$$

$$\Rightarrow \tan^{-1} \sqrt{e^k - 1} = \frac{\pi}{3}$$

$$\Rightarrow \sqrt{e^k - 1} = \sqrt{3}$$

$$\Rightarrow e^k = 4$$

$$\Rightarrow k = \ln 4$$
Thus $p = 4$

$$\Rightarrow p + 1 = 5$$

26. If the mean and variance of eight numbers 3, 7, 9, 12, 13, 20, x and y be 10 and 25 respectively, then xy is equal to

Accepted Answers

$$\begin{aligned} \mathsf{Mean} &= \frac{64 + x + y}{8} = 10 \\ \Rightarrow x + y &= 16 \end{aligned}$$

$$\begin{array}{l} \text{Variance} = \frac{\sum x_i^2}{n} - (\overline{x})^2 \\ \Rightarrow 25 = \frac{3^2 + 7^2 + 9^2 + 12^2 + 13^2 + 20^2 + x^2 + y^2}{8} - 100 \\ \Rightarrow 1000 = 852 + x^2 + y^2 \\ \Rightarrow x^2 + y^2 = 148 \\ \Rightarrow (x+y)^2 - 2xy = 148 \\ \Rightarrow 256 - 2xy = 148 \\ \therefore xy = 54 \end{array}$$

BYJU'S The Learning App

Full Syllabus Test 1

27. The distance from the origin to the normal of the curve $x=2\cos t+2t\sin t,$ $y=2\sin t-2t\cos t$ at $t=\frac{\pi}{4}$ is

Accepted Answers

$$x = 2\cos t + 2t\sin t$$

$$\frac{dx}{dt} = 2t\cos t$$

$$y = 2\sin t - 2t\cos t$$

$$rac{dy}{dt} = 2t \sin t$$

$$\Rightarrow \frac{dy}{dx} = \tan t$$

So, slope of normal at
$$t = \frac{\pi}{4}$$
 is $-\frac{1}{\tan t} = -1$

At
$$t=rac{\pi}{4}, x=\sqrt{2}\left(1+rac{\pi}{4}
ight)$$
 and $y=\sqrt{2}\left(1-rac{\pi}{4}
ight)$

Hence, equation of normal at
$$t=rac{\pi}{4}$$
 is $x+y-2\sqrt{2}=0$

Distance of normal from the origin
$$=\left| \frac{-2\sqrt{2}}{\sqrt{1+1}} \right| = 2$$
 units

BYJU'S The Learning App

Full Syllabus Test 1

28. If
$$y=\dfrac{\sin x}{1+\dfrac{\cos x}{1+\dfrac{\sin x}{1+\dfrac{\cos x}{1+\cdots\infty}}}}$$
, then $\dfrac{dx}{dy}$ at $x=\dfrac{\pi}{2}$ is

Accepted Answers

$$y = \frac{\sin x}{1 + \frac{\cos x}{1 + y}}$$

$$\Rightarrow y = \frac{(1+y)\sin x}{1 + y + \cos x}$$

$$\Rightarrow y + y^2 + y\cos x = \sin x + y\sin x$$

$$\Rightarrow \frac{dy}{dx} + 2y\frac{dy}{dx} + y(-\sin x) + \cos x\frac{dy}{dx} = \cos x + y\cos x + \sin x\frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx}(1 + 2y + \cos x - \sin x) = y\sin x + (1+y)\cos x$$

$$\Rightarrow \frac{dy}{dx} = \frac{y\sin x + (1+y)\cos x}{1 + 2y + \cos x - \sin x}$$

At
$$x=\frac{\pi}{2}$$
, $\frac{dy}{dx}=\frac{y}{2y}=\frac{1}{2}$ $\Rightarrow \frac{dx}{dy}=2$

29. If
$$f(x)=\int rac{2x^5+5x^4}{\left(4+2x+3x^5
ight)^2}dx, (x\geq 0)$$
 and $f(0)=0,$ then the value of $72\cdot f(1)$ is

Accepted Answers

$$\mathsf{Given}: f(x) = \int \frac{2x^5 + 5x^4}{\left(4 + 2x + 3x^5\right)^2} \! dx$$

Taking
$$x^{10}$$
 common from numerator and denominator, we get
$$f(x)=\int \frac{2x^{-5}+5x^{-6}}{\left(4x^{-5}+2x^{-4}+3\right)^2}dx$$

Taking
$$4x^{-5} + 2x^{-4} + 3 = z$$

 $\Rightarrow (-20x^{-6} - 8x^{-5}) dx = dz$

$$\Rightarrow f(z) = -rac{1}{4}\intrac{dz}{z^2} = rac{1}{4z} + C$$

$$\Rightarrow f(x)=rac{x^5}{4\left(3x^5+2x+4
ight)}+C$$
 As $f(0)=0\Rightarrow C=0$

As
$$f(0) = 0 \Rightarrow C = 0$$

So,
$$72 \cdot f(1) = 72 imes \frac{1}{36} = 2$$

30. In triangle ABC, $\angle B=\frac{\pi}{3}$ and $\angle C=\frac{\pi}{4}$. Let D divide BC internally in the ratio 1:3 and the angles $\angle BAD=\theta$, $\angle CAD=\phi$. The value of $\frac{\sin^2\phi}{\sin^2\theta}=$

Accepted Answers

6 6.0 6.00 06

Solution:

Using sine rule in ΔABD ,

$$rac{\sin heta}{BD} = rac{\sin 60^{\circ}}{AD} \ \Rightarrow rac{AD}{BD} = rac{\sin 60^{\circ}}{\sin heta} \quad \cdots (i)$$

Using sine rule in $\triangle ACD$,

$$\frac{\sin \phi}{DC} = \frac{\sin 45^{\circ}}{AD}$$

$$\Rightarrow \frac{DC}{AD} = \frac{\sin \phi}{\sin 45^{\circ}} \quad \cdots (ii)$$

Multiplying equation (i),(ii), we get

$$\frac{DC}{BD} = \frac{\sin 60^{\circ} \sin \phi}{\sin 45^{\circ} \sin \theta}$$

Hence,
$$\frac{\sin^2\phi}{\sin^2\theta}=6$$