
1. The values of a for which the number 6 lies in between the roots of the
equation x2 + 2(a − 3)x + 9 = 0, belong to

 A. ( , ∞)

 B. (−∞, − )

 C. (−∞, 0) ∪ (6, ∞)

 D. (−∞, 0) ∪ (3, ∞)




f(x) = x2 + 2(a − 3)x + 9 is a parabola facing upwards as shown in the
figure.


Let the roots be α and β with α < β

If 6 lies between α and β,


f(6) < 0

⇒ (6)2 + 2(a − 3)(6) + 9 < 0


⇒ 12a + 9 < 0



⇒ a < −
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2. The line 4x − 3y + 2 = 0 is rotated through an angle of  in clockwise

direction about the point (1, 2). The equation of the line in its new position is 

 A. x − 7y + 13 = 0

 B. y − 7x + 5 = 0

 C. x + 7y − 15 = 0

 D. y + 7x − 15 = 0




(1, 2) lies on the line 4x − 3y + 2 = 0

The slope of the given line is tan θ =



Let the slope of the new line be m.

Angle between these two lines is 45∘




⇒ tan 45∘ =

∣
∣

∣

∣

∣
∣

∣
∣

∣

∣

∣
∣



⇒ = ±1



⇒ 4 − 3m = ±(3 + 4m)



⇒ m =     (m = −7 rejected)





Required equation of line is



y − 2 = (x − 1)



⇒ x − 7y + 13 = 0
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3. The circle passing through (1, −2) and touching the x-axis at (3, 0) also
passes through the point 

 A. (−2, −2)

 B. (2, −5)

 C. (5, −2)

 D. (−2, 5)




As the circle is touching the x−axis at (3, 0),
let the centre of the circle be C(3, k)


Radius, r = |k|

Equation of the circle is (x − 3)2 + (y − k)2 = k2


Above circle passes through (1, −2).

Then, (1 − 3)2 + (−2 − k)2 = k2


⇒ k = −2

Hence, equation of the circle is (x − 3)2 + (y + 2)2 = 4


Clearly, (5, −2) satisfies it.
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4. Let the coefficients of powers of x in the second, third and fourth terms in
the binomial expansion of (1 + x)n, where n is a positive integer, be in
arithmetic progression. The sum of the coefficients of odd powers of x in the
expansion is

 A. 32

 B. 64

 C. 128

 D. 256

Given that nC1,  nC2,  nC3 are in A.P.
⇒ 2 nC2 = nC1 + nC3



⇒ = n +



⇒ n2 − 9n + 14 = 0


⇒ n = 7     [n = 2 rejected]

Sum of the coefficients of odd powers of x in the expansion is 

2n−1 = 26 = 64
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5. If the imaginary part of  is −2, then the locus of z is 

 A. a circle

 B. a straight line

 C. an ellipse

 D. a parabola
Let z = x + iy

=



= ×  



= × {(1 − y) − ix} 



∴ Imaginary part



= = −2

⇒ 2y − 2y2 − 2x2 − x = −2x2 − 2 + 4y − 2y2


⇒ x + 2y − 2 = 0 which is a straight line.
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6. A geometric progression with common ratio r, consists of an even number
of terms. If the sum of all terms is 5 times the sum of the terms occupying

the odd places, then 
4

∑
i=1

(ir)2 is

 A. 1456

 B. 120

 C. 1172

 D. 480

Let the G.P. be a, ar, ar2, … , ar2n−1.
Then, S2n = 5(a + ar2 + ⋯ + n terms)



⇒ (1 − r2n) = 5 ⋅ (1 − (r2)n)



⇒ r + 1 = 5


⇒ r = 4




Now, 
4

∑
i=1

(ir)2




= 16
4

∑
i=1

i2




= 16 ×



= 480
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7.
If a, b, c,x are positive integers, then 

∣
∣

∣

∣
∣

a2 + x ab ac

ab b2 + x bc

ac bc c2 + x

∣
∣

∣

∣
∣

 is divisible by 

 A. x2

 B. x3

 C. x4

 D. a2 + b2 + c2 

Δ =

∣
∣

∣

∣
∣

a2 + x ab ac

ab b2 + x bc

ac bc c2 + x

∣
∣

∣

∣
∣

  






=

∣
∣

∣

∣
∣

a3 + ax a2b a2c

ab2 b3 + bx b2c

ac2 bc2 c3 + cx

∣
∣

∣

∣
∣

  






=

∣
∣

∣

∣
∣

a2 + x a2 a2

b2 b2 + x b2

c2 c2 c2 + x

∣
∣

∣

∣
∣

 





Applying R1 → R1 + R2 + R3,



Δ =

∣
∣

∣

∣
∣

a2 + b2 + c2 + x a2 + b2 + c2 + x a2 + b2 + c2 + x

b2 b2 + x b2

c2 c2 c2 + x

∣
∣

∣

∣
∣

 






= (a2 + b2 + c2 + x)

∣
∣

∣

∣
∣

1 1 1

b2 b2 + x b2

c2 c2 c2 + x

∣
∣

∣

∣
∣





Applying C2 → C2 − C1 and C3 → C3 − C1 



Δ = (a2 + b2 + c2 + x)

∣
∣

∣

∣
∣

1 0 0

b2 x 0

c2 0 x

∣
∣

∣

∣
∣

 





= (a2 + b2 + c2 + x)x2  


∴ determinant is divisible by x2
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8. An open cylindrical can has to be made with 100 square units of tin. If its
volume is maximum, then the ratio of its base radius and the height is

 A. 2 : 1

 B. 1 : 1

 C. 1 : 2

 D. √2 : 1

Let r be the base radius and h be the height of the cylinder.
Then, 2πrh + πr2 = 100

⇒ h = −



Volume of cylinder, V = πr2h = πr2 ( − ) = 50r −



= 50 −





= 0



⇒ r =




= −3πr < 0 at r =



Hence, V  is maximum when r =



∴ h = − =

So, when V  is maximum, r : h = 1 : 1
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9. If (tan−1 x)2 + (cot−1 x)2 = , then the sum of the solutions in x is 

 A. 1

 B. −1

 C. 0 

 D. not finite

(tan−1 x)2 + (cot−1 x)2 =  





Since tan−1 x + cot−1 x = ,



So, (tan−1 x)2 + ( − tan−1 x)

2

=  



⇒ (tan−1 x)2 + − π tan−1 x + (tan−1 x)2 =  



⇒ 2(tan−1 x)2 − π tan−1 x + − = 0 



⇒ 16(tan−1 x)2 − 8π tan−1 x − 3π2 = 0


Above equation is quadratic in tan−1 x



tan−1 x =  



⇒ tan−1 x =



⇒ tan−1 x = ,  



⇒ tan−1 x =



⇒ x = −1 
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10. If in a △ABC, sinC + cosC + sin(2B + C) − cos(2B + C) = 2√2, then 
△ABC is 

 A. isosceles

 B. equilateral 

 C. right-angled isosceles

 D. right-angled but not isosceles

sinC + cosC + sin(2B + C) − cos(2B + C) = 2√2

⇒ sinC + sin(2B + C) + cosC − cos(2B + C) = 2√2 


⇒ 2 sin(B + C) cosB + 2 sinB sin(B + C) = 2√2

⇒ 2 sin(π − A)[cosB + sinB] = 2√2     [∵ A + B + C = π]





⇒ sinA[√2 (sinB ⋅ + cosB ⋅ )] = √2



⇒ sinA ⋅ sin(B + ) = 1



It is possible only if sinA = 1 and sin(B + ) = 1 



So, A =  and B + =  



⇒ A = ,  B = C =
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11. If the chords of the hyperbola x2 − y2 = a2 touch the parabola y2 = 4ax,

then the locus of the midpoints of the chords is the curve 

 A. y2(x + a) = x3

 B. y2(x − a) = x3

 C. y2(x + 2a) = 3x3

 D. y2(x − 2a) = 2x3

If (x1, y1) is the midpoint of the chord to the hyperbola x2 − y2 = a2,
its equation is T = S1


i.e., xx1 − yy1 − a2 = x2
1 − y2

1 − a2


⇒ xx1 − yy1 = x2
1 − y2

1 

⇒ y = x +





If this is a tangent to y2 = 4ax,


then c =



⇒ =



⇒ x3
1 = y2

1 (x1 − a)



∴ Locus of (x1, y1) is x3 = y2(x − a) 
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12. Let f : R → R be a function defined by f(x) = x3 + x2 + 3x + sinx. Then f
is

 A. injective and surjective

 B. injective but not surjective

 C. surjective but not injective

 D. neither injective nor surjective 
f(x) = x3 + x2 + 3x + sinx,  x ∈ R

f ′(x) = 3x2 + 2x + 3 + cosx

f ′(x) = g(x) + cosx


g(x) > 0 as D = 4 − 36 = −32 < 0



Range of g is [ , ∞) 



i.e., range of g is [ , ∞) = [ , ∞)



Also, −1 ≤ cosx ≤ 1

∴ f ′(x) > 0


Hence, function f is strictly increasing.

⇒ f is injective.




lim
x→∞

f(x) = ∞



and lim
x→−∞

f(x) = −∞ 



Also, f is continuous over R.
⇒ Range of f is R


∴ f is surjective.
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13. If a variable tangent of the circle x2 + y2 = 1 intersects the ellipse 
x2 + 2y2 = 4 at points P  and Q, then the locus of the point of intersection of
tangent at P  and Q is

 A. a circle of radius 2 units

 B. a parabola with focus at (2, 3)

 C. an ellipse with latus rectum 2 units

 D. a hyperbola with eccentricity 

Let the intersection of the tangent at P  and Q to the ellipse + = 1  be 
(x1, y1)


Then the equation of PQ is T = 0



+ = 1



i.e., y = − +



This is a tangent to the circle x2 + y2 = 1

So, c2 = a2(1 + m2)



⇒ = 1 (1 + )



⇒ 16 = 4y2

1 + x2
1


⇒ + = 1



which is the equation of an ellipse.



Length of latus rectum = = = 2
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14. The two vectors î + ĵ + k̂ and î + 3ĵ + 5k̂ represent the two sides 
−−→
AB and 

−−→
AC  respectively of a triangle ABC. The length of the median through A is

 A. 7

 B. 14

 C. √14 

 D.  




−−→
AB = î + ĵ + k̂


−−→
AC = î + 3ĵ + 5k̂



⇒

−−→
BC =

−−→
AC −

−−→
AB = 2ĵ + 4k̂



Since D is the mid-point of  

−−→
BC,

−−→
BD = = ĵ + 2k̂





Now, in △ABD,


−−→
AD =

−−→
AB +

−−→
BD = î + 2ĵ + 3k̂



∴ |

−−→
AD| = √12 + 22 + 32 = √14
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15. The logical statement (p → q) → ((∼ p → q) → q) is

 A. a tautology

 B. equivalent to ∼ p → q

 C. equivalent to p →∼ q

 D. a fallacy
The truth table of given expression is given below
p q x ≡ p → q ∼ p ∼ p → q y ≡ (∼ p → q) → q x → y

T T T F T T T

T F F F T F T

F T T T T T T

F F T T F T T






For all possible truth values of p and q, the statement 
(p → q) → ((∼ p → q) → q) is true.


Hence, the given statement is a tautology.
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16.
lim
x→0

( )
1/x2

 is equal to

 A. e1/3

 B. 1

 C. e

 D. 0

L = lim
x→0

( )
1/x2

     [1∞ form]



= lim
x→0

(1 + − 1)
1/x2




= exp(lim
x→0

( − 1) )



= exp(lim
x→0

)



= exp

⎛
⎜
⎜
⎜
⎝

lim
x→0

⎞
⎟⎟⎟
⎠ 


= exp

⎛
⎜
⎜
⎜
⎝

lim
x→0

⎞
⎟
⎟
⎟
⎠ 


= e1/3
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17. Let f : R → R be a function defined by f(x) = max{x,  x3} . Then the set of
all points where f is not differentiable, is

 A. {−1, 0}

 B. {−1, 0, 1}

 C. {0, 1}

 D. {−1, 1}

f(x) = {x, −∞ < x ≤ −1 and 0 ≤ x ≤ 1
x3, −1 < x < 0 and x > 1 




At x = −1,


LHD = 1,  RHD = 3x2 = 3 




At x = 0,

LHD = 3x2 = 0,  RHD = 1




At x = 1,


LHD = 1,  RHD = 3x2 = 3

Hence f is not differentiable at −1, 0, 1




Alternative solution :







Clearly, we can observe from the graph that the function f is not
differentiable at x = −1, 0, 1
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18.
Let f(x) = {x2 sin , x ≠ 0

0, x = 0
. Then 

 A. f ′ does not exist at x = 0

 B. f ′ exists and is continuous at x = 0

 C. f ′ exists but not continuous at x = 0

 D. f ′ does not exist at any point
Clearly, f ′(x) exists for all x ≠ 0



f ′(0) = lim
h→0

= lim
h→0 


= lim
h→0

h sin = 0



∴ f ′(0) exists and equals 0




When x ≠ 0,



f ′(x) = − cos + 2x sin



lim
h→0

f ′(0−) and lim
h→0

f ′(0+) do not exist.



Hence, f ′ is not continuous at x = 0
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19. The area bounded by y = x2, y = [x + 1], x ≤ 1 and the y-axis, where [. ]

represents the greatest integer function, is 

 A.

 B.

 C.

 D. 1

y = x2,  y = [x + 1] = [x] + 1
For 0 ≤ x < 1,  y = 0 + 1 = 1








Hence, the required area = the shaded area



=

1

∫
0

xdy =

1

∫
0

√y dy



=
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20. The solution of the differential equation ydx − xdy = y2 tan( )dx is



( C is constant of integration)

 A. = Cex

 B. sin( ) = Cex

 C. cos( ) = Cex

 D. x = Cy

ydx − xdy = y2 tan( )dx



⇒ cot ( ) = dx



⇒ cot( )d( ) = dx



Integrating both sides, we get



log(sin ) = x + logC



⇒ sin = ex+logC = Cex

21. The total number of numbers greater than 4, 00, 000 that can be formed by
using the digits 0, 2, 2, 4, 4, 5 is 

Accepted Answers

90 90.0 90.00

Solution:

Suppose, the six-digit number is denoted by a1a2a3a4a5a6

For the number to be greater than 4, 00, 000,

a1 should be either 4 or 5.





If a1 is 4, then a2a3a4a5a6 can be arranged in = 60 ways



If a1 is 5, then a2a3a4a5a6 can be arranged in = 30 ways





∴ Total number of required numbers = 90
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22. Three persons A,B,C are to speak at a function along with 5 other persons.
If the persons speak in random order, the probability that A speaks before B

and B speaks before C is , where p, q are co-prime. Then p + q is 

Accepted Answers

7 7.0 7.00

Solution:

Total number of ways in which 8 persons can speak is 8!


Number of ways in which A,B and C can be arranged in the specified
speak order is 8C3 × 1 as the order of A,B,C is already fixed.


Remaining 5 persons can speak in 5! ways.

So the favourable number of ways = 8C3 × 5!



Hence, required probability = =

23. If x = log24 12, y = log36 24 and z = log48 36, then (1 + xyz) equals k times 
yz. The value of k is 

Accepted Answers

2 2.0 2.00

Solution:

1 + xyz = 1 + ⋅ ⋅



= 1 +



= = =



= 2 ⋅ ⋅



= 2yz = kyz

Hence, k = 2
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24. The plane P1 : 4x + 7y + 4z + 81 = 0 is rotated through a right angle about
its line of intersection with the plane P2 : 5x + 3y + 10z = 25. If the plane in
its new position be denoted by P  and the distance of plane P  from the origin
is d units, then the value of [d/2], where [. ] represents the greatest integer
function, is 

Accepted Answers

7 7.0 7.00

Solution:
P1 : 4x + 7y + 4z + 81 = 0


P2 : 5x + 3y + 10z = 25




Equation of plane passing through line of intersection of P1 and P2 is

P : (4x + 7y + 4z + 81) + λ(5x + 3y + 10z − 25) = 0


⇒ (4 + 5λ)x + (7 + 3λ)y + (4 + 10λ)z + 81 − 25λ = 0

This plane is perpendicular to P1.


So 4(4 + 5λ) + 7(7 + 3λ) + 4(4 + 10λ) = 0
⇒ λ = −1


Hence, equation of the plane P  is −x + 4y − 6z + 106 = 0 




Distance of plane P  from (0, 0, 0) is



d = =



Thus, [d/2] = 7

Copyright © Think and Learn Pvt. Ltd.

Full Syllabus Test 1

106

√1 + 16 + 36

106

√53



25.
If 

k

∫
ln 2

 dx = , then k = ln p. The value of p + 1 is 

Accepted Answers

5 5.0 5.00

Solution:
k

∫
ln 2

dx



Let ex − 1 = t2

⇒ exdx = 2tdt



⇒ dx = dt 





∴ ∫ dx




= ∫ dt = 2 tan−1 t






Now, 
k

∫
ln 2

dx =



⇒ 2 tan−1 √ek − 1 − 2 tan−1 √eln 2 − 1 =  



⇒ 2 tan−1 √ek − 1 − 2 tan−1 1 =



⇒ 2 tan−1 √ek − 1 − =



⇒ tan−1 √ek − 1 =



⇒ √ek − 1 = √3

⇒ ek = 4


⇒ k = ln 4

Thus p = 4

⇒ p + 1 = 5
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26. If the mean and variance of eight numbers 3, 7, 9, 12, 13, 20,x and y be 10

and 25 respectively, then xy is equal to 

Accepted Answers

54 54.0 54.00

Solution:

Mean = = 10



⇒ x + y = 16




Variance = − (¯̄x̄)2



⇒ 25 = − 100

⇒ 1000 = 852 + x2 + y2

⇒ x2 + y2 = 148

⇒ (x + y)2 − 2xy = 148

⇒ 256 − 2xy = 148

∴ xy = 54
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32 + 72 + 92 + 122 + 132 + 202 + x2 + y2

8



27. The distance from the origin to the normal of the curve x = 2 cos t + 2t sin t, 
y = 2 sin t − 2t cos t at t =  is 

Accepted Answers

2 2.0 2.00

Solution:
x = 2 cos t + 2t sin t

= 2t cos t

y = 2 sin t − 2t cos t

= 2t sin t

⇒ = tan t




So, slope of normal at t =  is − = −1 



At t = , x = √2(1 + ) and y = √2(1 − )



Hence, equation of normal at t =  is x + y − 2√2 = 0



Distance of normal from the origin =
∣
∣
∣

∣
∣
∣

= 2 units
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π

4

dx

dt

dy

dt

dy

dx
π

4

1

tan t
π

4

π

4

π

4
π

4
−2√2

√1 + 1



28. If y = , then  at x =  is 

Accepted Answers

2 2.0 2.00

Solution:

y =



⇒ y =



⇒ y + y2 + y cosx = sinx + y sinx



⇒ + 2y + y(− sinx) + cosx = cosx + y cosx + sinx



⇒ (1 + 2y + cosx − sinx) = y sinx + (1 + y) cosx



⇒ =





At x = ,



= =



⇒ = 2
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sinx

1 +
cosx

1 +
sinx

1 +
cosx

1 + ⋯ ∞

dx

dy

π

2

sinx

1 +
cosx

1 + y
(1 + y) sinx

1 + y + cosx

dy

dx

dy

dx

dy

dx

dy

dx
dy

dx
dy

dx

y sinx + (1 + y) cosx

1 + 2y + cosx − sinx

π

2
dy

dx

y

2y

1

2
dx

dy



29. If f(x) = ∫ dx, (x ≥ 0) and f(0) = 0, then the value of 

72 ⋅ f(1) is 

Accepted Answers

2 2.0 2.00

Solution:

Given : f(x) = ∫ dx



Taking x10 common from numerator and denominator, we get



f(x) = ∫ dx



Taking 4x−5 + 2x−4 + 3 = z
⇒ (−20x−6 − 8x−5) dx = dz

⇒ f(z) = − ∫ = + C

⇒ f(x) = + C




As f(0) = 0 ⇒ C = 0



So, 72 ⋅ f(1) = 72 × = 2
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2x5 + 5x4

(4 + 2x + 3x5)2

2x5 + 5x4

(4 + 2x + 3x5)2

2x−5 + 5x−6

(4x−5 + 2x−4 + 3)
2

1

4

dz

z2

1

4z

x5

4 (3x5 + 2x + 4)

1

36



30. In triangle ABC, ∠B =  and ∠C = . Let D divide BC internally in the

ratio 1 : 3 and the angles ∠BAD = θ, ∠CAD = ϕ. The value of =

Accepted Answers

6 6.0 6.00 06

Solution:



Using sine rule in ΔABD,

=



⇒ =       ⋯ (i)





Using sine rule in ΔACD,



=



⇒ =       ⋯ (ii)





Multiplying equation (i), (ii), we get



=




Hence, = 6
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π

3

π

4
sin2 ϕ

sin2 θ

sin θ

BD

sin 60∘

AD
AD

BD

sin 60∘

sin θ

sinϕ

DC

sin 45∘

AD
DC

AD

sinϕ

sin 45∘

DC

BD

sin 60∘

sin 45∘

sinϕ

sin θ

sin2 ϕ

sin2 θ


