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SIMPLE HARMONIC MOTION

GENERAL EQUATION OF SHM

Displacement  x Asin t   

Here  t   is the pahse of the motion and   is the initial phase of the motion

 Two vibrating particles are said to be in same phase if the phas difference between them

is an even multiple of ,  i.e., 2n     where n = 0, 1, 2, 3 ......

 Two vibrating particle are said to be in opposite phase if the pahse difference between

them is an odd multiple of   i.e.,  2n 1    , where n = 0, 1, 2, 3 .......

Angular Frequency

2
2 f

T


   ,

where T is the time period
            f is the frequency

Time period (T)

2
T





 For linear SHM  (F  – x) ; F = 
2

2

d x
m –kx

dt
  = – m2x, wheree 

k
m


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EE

 For angular SHM
2

2
2

d k
( ): 1 1 k m , where 

dt m


            

 Displacement x = A sin(t + ),

 Angular displacement = 
0
 sin(t + )

 Velocity 2 2dx
v A cos( t ) A x

dt
       

 Angular velocity 0

d
cos( t )

dt

     

 Acceleration
2

2 2
2

d x
a A sin( t ) x

dt
        

  Angular acceleration
2

2 2
02

d
sin( t )

dt

        

  Kinetic energy 2 2 2 21 1
K mv m A cos ( t )

2 2
     

  Potential energy 2 2 2 21 1
U kx m A sin ( t )

2 2
     

  Total energy 2 21
E K U m A constant

2
    

 Note :
(i) Total energy of a particle in S.H.M., is same at all instant and at all displacement.
(ii) Total energy depends upon mass, amplitude and frequency of vibration of the particle
executing S.H.M.

Average energy in S.H.M.
(i) The time average of P.E. and K.E. over one cycle is

(a) <K>t 
21

kA
4

 (b) <PE>t = 21
kA

4
(c) <TE>t = 21

kA
2

(ii) The position average of P.E. and K.E. between x = –A to x = A

(a) <K>x 
21

kA
3

 (b) <PE>x = 21
kA

6
(c) <TE>x = 21

kA
2
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Differential equation of SHM

 Linear 
2

2
2

d x
SHM x 0

dt
 

 Angular 
2

2
2

d x
SHM 0

dt
  

Spring block system

 

m
T 2

k
 

  

k 

m m
T 2

k
 

 
T 2

k


  , wheree  = reduced mass 1 2

1 2

m m
m m




When spring mass is not negligible

 

sm
m

3T 2
k


 

Series combination of springs

 

eff eff 1 2 3

m 1 1 1 1
T 2 , where 

k k k k k
    
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Keq = k1+k2

Parallel combination of springs

 

T = 2
eff

m
k , where kefff = k1 + k2 + k3

I

 

     

 

  

 

eff 1 2K K K 

Simple Pendulum

      

 

Time period  T = 
L

2
g



 

Time period –1 1

0

L
T 2sin

g

         
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 If the length of simple pendulum is comparable to the radius of the earth R, then

T =  2

1
1 1g

R
  
 

If  << R then T = 2
g




If  >> R then T = 
R

2
g

    84 minutess

Physical Pendulum

T 2 I mg  

2
cmHere I I m  

  is the distance between the point of suspension and centree
of mass

Time period of Conical pendulum

 

T = 2
cos

g


= 2
h
g

Time period of Torsional pendulum

T = 2
I
k

where k = torsional constant of the wire,
             I = moment of inertia of the body about the vertical axis
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Time Period in Accelerating Cage

a a

a

effg g a

T 2
g a

 

 



effg g a

T 2
g a

 

 



 

2 2
eff

1 22 2

g g a

T 2
g a

 

 




SHM of gas - piston system
Here elastic force is developed due to bulk elasticity of the gas

2

0

P BA x
B F –

– V / V V


  
   2

0

m
T 2

BA / V
 

 

A

V0

KEY POINTS
 SHM is the projection of uniform circular motion along one of the diameters of the circle.
 The periodic time of a hard spring is less as compared to that of a soft spring because the

spring constant is large for hard spring.
 For a system executing SHM, the mechanical energy remains constant.
 Maximum kinetic energy of a particle in SHM may be greater than mechanical energy as

potentia! energy of a system may be negative.
 The frequency of oscillation of potential energy and kinetic energy is twice as that of dis-

placement or velocity or acceleration of a particle executing S.H.M.

SIMPLE HARMONIC MOTION
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Spring cut into two parts :

 

1

2

m
Here

n





1 2

m n
 ,  

m n m n
           

    But  k = k11 = k22

 1 2

(m n) (m n)
k k ; k k

m n
 

 

FREE, DAMPED, FORCED OSCILLATION AND RESONANCE
Free oscillation

 The oscillation of a prticle with fundamental frequency under the influence of restoring
force are defined as free oscillatios.

Damped oscillations
 The oscillations of a body whose amplitude goes on decreasing with time are defined as

damped oscillations.
 In these oscillations the amplitude of oscillations decreases exponentially due to damping

forces like frictional force, viscous force etc.
 If initial amplitude is Xm then amplitude after time t will be x = xm e–t where  = Damping

coefficient

xm

O
t 
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SIMPLE HARMONIC MOTION

FORCED OSCILLATION
• The oscillations in which a body oscillates under the influence of an external periodic

force (driver) are known as forced oscillations.
• The driven body does not oscillate with its natural frequency rather it oscillates with the

frequency of the driver.
• The amplitude of oscillator decreases due to damping forces but on account of the energy

gained from the external source (driver) it remains constant.

RESONANCE
• When the frequency of external force (driver) is equal to the natural frequency of the

oscillator (driven), then this state of the driver and the driven is known as the state of
resonance.

• In the state of resonance, there occurs maximum transfer of energy from the driver to the
driven, Hence the amplitude of motion becomes maximum.
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WAVE ON A STRING

CLASSIFICASTION OF WAVES

Medium
Necessity

Propagation
of energy

Vibration of
medium particle

Dimension

Mechanical (Elastic) waves

Progressive waves

Transverse waves

1-D (Waves on strings)

Non-mechanical waves (EM Waves)

Stationary (standing) waves

Longitudinal waves

3-D (Sound or light waves)
2-D (Surface waves or ripples on water)

 In strings, mechanical waves are always transverse.
 In gases and liquids, mechanical waves are always longitudinal because fluids cannot sustain

shear.
 In solids mechanical waves (may be sound) can be either transverse or

longitudinal depending on the mode of excitation.

Plane progressive waves

 Wave equation : y =A sin (t – kx) where k = 
2


 = wave propagration constant.

 Differential equaton : 
2 2

2 2 2

y 1 y
x v t
 


 

Wave velocity (phase velocity) 
dx

v
dt k


 

 t – kx = constant  
dx
dt k




 Particle velocity vp = 
dy

A cos( t – kx)
dt

  

p

dy
v –v slope –v

dx
     
 

WAVE ON A STRING
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 Particle acceleration : 
2

2 2
p 2

y
a – Asin( t – kx) – y

t


     


For particle 1 : vp  and ap 

For particle 2 : vp  and ap 
1

2

3
4

y

t

For particle 3 : vp  and ap 

For particle 4 : vp  and ap 

 Relation between phase difference, path difference & time difference.

0 T/2 4
 



T
T

2 T
  

 
 

Energy in wave Motion


2 2 2 2 2
P p

KE 1 m 1 1
v v A cos ( t – kx)

volume 2 volume 2 2
       

 


2

2 2 2 2PE 1 dy 1
v A cos ( t – kx)

volume 2 dx 2
      
 

 2 2 2TE
A cos ( t – kx)

volume
  

 Pressure energy density [i.e. Average total energy / volume] 2 21
u A

2
 

 Power : P = (energy density) (volume/time) P = 
2 21
A (Sv)

2
  
 

[where S = Area of cross-section]

 Intensity : I = 
2 2Power 1
A v

areaof crosssec tion 2
 

Speed of transverse wave on string

T
v

µ
  wheree µ = mass/length and T = tension in the string

WAVE ON A STRING
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WAVE FRONT

 Spherical wave front (source  point source)

 Cylindrical wave front (source linear source)

 Plane wave front (source  point/linear) source at very large distance

INTENSITY OF WAVE

 Due to point source I  2

1
r

y(r,t ) = A
sin( t – k.r)

r


 

 Due to cylindrical source  
I

l
r

 y(r, t) =
A

sin( t – k.r)
r


 

 Due to plane source I = constant y(r, t) = A sin (t – k.r
  )

INTERFERENCE OF WAVES
y1 = A1 sin (t –kx) y2 = A2 sin (t –kx + 0)
y = y1 + y2 = A sin (t – kx + )

where A = 2 2
1 2 1 2 0A A 2A A cos  

and tan 
2 0

1 2 0

A sin
A A cos


 

A1

A2

A

WAVE ON A STRING
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As I  A2

So 1 2 1 2 0I I I 2 I I cos   

For constructive interference [Maximum intensity]
f0 = 2np or path difference = nl where n = 0, 1, 2, 3,...

2
m ax 1 2I ( I I ) 

For destructive interference [Minimum Intensity]


0
 = (2n + 1) or path difference = (2n 1)

2




where n = 0, 1, 2, 3, .... 2
min 1 2I ( I – I )

 Degree of hearing = 
max min

max min

I I
100

I I





Reflection and Refraction (transmission) of waves

 The frequency of the wave remain unchanged.

 Amplitude of reflected wave  = 2 1
r i

1 2

v – v
A A

v v
 

   

 Amplitude of transmitted wave  At = 
2

j

1 2

2v
A

v v
 
  

 If v2 > v1 i.e., medium -2 is rarer

Ar > 0  no phase change is reflected wave

 If v2 < v1 i.e., medium -1 is raer

Ar < 0  There  is a phase change of p in reflected wave.

Standing waves or Stationary waves
Formation of standing wave is possible only in bounded medium.

 Let two waves are y1 = A sin(t –kx) ; y2 = A sin(t + kx) by principle of superposition
y = y1 + y2 = 2A cos kx sin t  Equation of stationary waves

 Nodes  amplitude is minimum : cos kx = 0  x = 
3 5

, , .....
4 4 4
  

 Antinodes  amplitude is maixmum : cos kx = 1  x = 0, 
3

, ,
2 2
 
 ,...

WAVE ON A STRING
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Transverse Stationary Waves In Stretched String

Fixed at both ends
[fixed end  Node & free end  Antinode]

N

N

N

A
N

N

N
A

N

N

l = 1

Fundamental or first harmonic, f1

First overtone or second harmonic, f2 = 2f1

Second overtone or third harmonic, f3 = 3f1

n 1

v v
f n n.f , (n 1,2,3,......)

2L
   


Fixed at one end

A

first harmonic (fundamental frequency)

third harmonic (first overtone)

fifth harmonic (second overtone)

N

N

NN

N

N AA

A

A

A

1 = 4l

f v/1 = 4l

1 = 4 /3l

f 3v/4 = 3f3  1 = l 

5   = 4 /5l

f 5v/4  = 5f5  1 = l
ratio of frequencies f  : f  : f  = 1 : 3 : 51 2 3

WAVE ON A STRING
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SOUND WAVES

Velocity of sound in a medium of elasticity E and density  is

v = ඨ
B

ρ
 v = ඨ

Y

ρ
 

v = ඨ
E

ρ
 

Solids 
(Young’s Modulus) 

Fluid 
(Bulk Modulus) 

 Newton’s formula : Sound propagation is isothermal B = P  v = 
P


 Laplace correction : Sound propagation is adiabatic B = P  
P

v





KEY POINTS

 With rise in temperature, velocity of sound in a gas increases as 
W

RT
v

M




 With rise in humidity velocity of sound increases due to presence of water in air.
 Pressure has no effect on velocity of sound in a gas as long as temperature remains constant.

Displacement and pressure wave

Displaceme wave y = Asin(t – kx)
Pressure wave p = p0cos(t–kx)
where p0 = ABk = Av

SOUND WAVE

SOUND WAVE
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KEY POINTS
 The pressure wave is 90º out of phase . r. t. displacement wave, i.e,

displacement will be maximum when pressure is minimum and vice-versa,

 Intensity in terms of pressure amplitude 
2
0p

I
2 v




Vibrations of organ pipes
Stationary longitudinal waves closed end  displacement node, open end  displacement
antinode

Closed end organ pipe

v
f

4 4


  
       

3 3v
f

4 4


  
  

5 5v
f

4 4


  


 Only odd harmonics are present

 Maximum possible wavelength = 4

 Frequency of mth overtone = 
v

(2m 1)
4




Open end organ pipe

v
f

2 2


  


2v
f

2
  


3 3v

f
2 2


  


 All harmonics are present

 Maximum possible wavelength is 2.

 Frequency of mth overtone = 
v

(m 1)
2




SOUND WAVE
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End correction
Due to finite momentum of air molecules in organ pipes reflection takes place  not exactly
at open end but some what above it, so anti node is not formed exactly at free end but
slightly above it.

 In closed organ pipe 1

v
f

4( e)


  where, e = 0.6 R (R = radius of pipe)

 In open organ pipe f1 = 
v

2( 2e)

Resonance Tube

Wavelength =2(
2
 –

1
) End correction 2 1– 3

e
2


 

Intensity of sound in decibels

Sound level , SL = 10log10 
0

I
I
 
 
 

Where I0 = threshold of human ear = 10–12 W/m2

Characteristics of sound
 Loudness Sensation received by the ear due to intensity of sound.
 Pitch Sensation received by the ear due to frequency of sound.
 Quality (or Timbre)  Sensation received by the ear due to waveform of sound.

SOUND WAVE
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SOUND WAVE

Doppler's effect

 
 

0

s

V V
f ' f

V V



 0

s

f ' observed frequency
f  actual frequency
V = velocity of sound waves
V =velocity of observer
V velocity of the source






Source Moving Towards the Observer at 
Rest f ′ =

V

(V − Vs)
f 

Source Moving Away from the Observer at 
Rest f ′ =

V

൫V − (−Vs)൯
f 

Observer Moving Towards a Stationary 
Source f ′ =

(V + V0)

V
f 

Observer Moving Away from a Stationary 
Source f ′ =

(V − V0)

V
f 

Doppler’s effect in light :

 Case I:
Observe Light Source

O V S

1 v / c v
Frequency v' v 1 v

1 – v / c c
Violet Shift

1 – v / c v
Wavelength ' 1 –

1 v / c c

              


                 

 Case II :
Observe Light Source

O V          S 

1 – v / c v
Frequency v' v 1 – v

1 v / c c
Red Shift

1 v / c v
Wavelength ' 1

1 – v / c c

             


                  


