Subject: Mathematics

1. Let $X=\{1,2,3,4,5\}$. The number of different ordered pairs (Y, Z) that can be formed such that $Y \subseteq X, Z \subseteq X$ and $Y \cap Z$ is empty, is
A. 5^{3}
B. 5^{2}
C. 3^{5}
D. 2^{5}
2. Let $f(x)=\left\{\begin{array}{cc}\sqrt{\{x\}}, & x \notin \mathbb{Z} \\ 1, & x \in \mathbb{Z}\end{array}\right.$ and $g(x)=\{x\}^{2}$, the area bounded by $f(x)$ and $g(x)$ for $x \in[0, n] ;(n \in \mathbb{Z})$ is denoted by $S(n)$, then which of the following is correct?
A. $\quad S(10)=\frac{5}{3}$
B. $\frac{S(10)}{S(5)}=4$
C. $\lim _{n \rightarrow \infty} \frac{S(n)}{n}=\frac{1}{3}$
D. $\sum_{n=1}^{9} S(n)=30$
3. Number of 4 digit numbers that can be formed using the digits $0,1,2,3,4,5$ which are divisible by 6 when repetition of digits is not allowed are
A. 24
B. 52
C. 72
D. 48

Full Syllabus Test 2

4. The sum of the series of $\cot ^{-1} \frac{5}{\sqrt{3}}+\cot ^{-1} \frac{9}{\sqrt{3}}+\cot ^{-1} \frac{15}{\sqrt{3}}+\cot ^{-1} \frac{23}{\sqrt{3}}+\cdots \infty$ is equal to
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{12}$
5. $p x+q y=40$ is a chord of minimum length of the circle $(x-10)^{2}+(y-20)^{2}=729$. If the chord passes through $(5,15)$, then $p^{2019}+q^{2019}$ is equal to
A. 0
B. 2
C. 2^{2019}
D. 2^{2020}
6.

$\int \frac{\cos x+\sqrt{3}}{1+4 \sin \left(x+\frac{\pi}{3}\right)+4 \sin ^{2}\left(x+\frac{\pi}{3}\right)} d x$ is
where c is constant of integration
A. $\frac{\cos x}{1+2 \sin \left(x+\frac{\pi}{3}\right)}+c$
B. $\frac{\sec x}{1+2 \sin \left(x+\frac{\pi}{3}\right)}+c$
C. $\frac{\sin x}{1+2 \sin \left(x+\frac{\pi}{3}\right)}+c$
D. $\frac{1}{2} \tan ^{-1}\left(1+2 \sin \left(x+\frac{\pi}{3}\right)\right)+c$

Full Syllabus Test 2

7. If $z_{n}=\cos \frac{\pi}{(2 n+1)(2 n+3)}+i \sin \frac{\pi}{(2 n+1)(2 n+3)}, n \in \mathbb{N}$, then the value of $\lim _{k \rightarrow \infty}\left(z_{1} \cdot z_{2} \cdot z_{3} \cdots z_{k}\right)$ is
A. 1
B. $\frac{\sqrt{3}}{2}+i \frac{1}{2}$
C. $\frac{1}{2}+i \frac{\sqrt{3}}{2}$
D. $\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$
8. If the statement $(p \rightarrow q) \rightarrow(q \rightarrow r)$ is false, then truth values of statement p, q, r respectively, can be
A. F T F
B. T F T
C. T F F
D. $\mathrm{F} T \mathrm{~T}$
9. The value of
$\left(\sqrt{3}+\tan 1^{\circ}\right)\left(\sqrt{3}+\tan 2^{\circ}\right)\left(\sqrt{3}+\tan 3^{\circ}\right) \cdots \cdots\left(\sqrt{3}+\tan 28^{\circ}\right)\left(\sqrt{3}+\tan 29^{\circ}\right)$ is
A. 2^{28}
B. $2^{15}+2-\sqrt{3}$
C. 2^{29}
D. $2^{14}+2-\sqrt{3}$

Full Syllabus Test 2

10. Let $x_{n}, y_{n}, z_{n}, w_{n}$ denote $n^{\text {th }}$ term of four different arithmetic progressions with positive terms. If $x_{4}+y_{4}+z_{4}+w_{4}=8$ and $x_{10}+y_{10}+z_{10}+w_{10}=20$, then maximum possible value of $x_{20} \cdot y_{20} \cdot z_{20} \cdot w_{20}$ is
A. 10^{4}
B. 10^{8}
C. 10^{10}
D. 10^{20}
11. The complete solution set of the inequality $\log _{5}\left(x^{2}-2\right)<\log _{5}\left(\frac{3}{2}|x|-1\right)$ is
A. $\left(-\infty,-\frac{2}{3}\right) \cup\left(\frac{2}{3}, \infty\right)$
B. $\left(-2,-\frac{2}{3}\right) \cup\left(\frac{2}{3}, 2\right)$
C. $(-2,-\sqrt{2}) \cup(\sqrt{2}, 2)$
D. $(-2,-\sqrt{2}) \cup\left(\frac{2}{3}, 2\right)$
12. Let $y=f(x)$ be a real-valued differentiable function on the set of all real numbers \mathbb{R} such that $f(1)=1$. If $f(x)$ satisfies $x f^{\prime}(x)=x^{2}+f(x)-2$, then
A. $f(x)$ is even function
B. $f(x)$ is odd function
C. minimum value of $f(x)$ is 0
D. $y=f(x)$ represent a parabola with focus $\left(1, \frac{5}{4}\right)$

Full Syllabus Test 2

13. A vector (\vec{d}) is equally inclined to three vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$. Let $\vec{x}, \vec{y}, \vec{z}$ be three vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$, respectively. Then which of the following is INCORRECT?
A. $\quad \vec{x} \cdot \vec{d}=0$
B. $\vec{y} \cdot \vec{d}=0$
C. $\vec{z} \cdot \vec{d}=0$
D. none of these
14. The eccentricity of the conic $4(2 y-x-3)^{2}-9(2 x+y-1)^{2}=80$ is
A. $\frac{2}{\sqrt{3}}$
B. $\frac{\sqrt{3}}{\sqrt{2}}$
C. $\sqrt{2}$
D. $\frac{\sqrt{13}}{3}$
15.

The integral $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{x}(\ln (\cos x))(\cos x \sin x-1) \operatorname{cosec}^{2} x d x$ is equal to
A. $\frac{e^{\pi / 4}}{2}\left[2 e^{\pi / 4}+\ln 2-2\right]$
B. $\frac{e^{\pi / 4}}{2}\left[e^{\pi / 4}+\ln 2-2\right]$
C. $\frac{e^{\pi / 4}}{2}\left[e^{\pi / 4}-\ln 2+2\right]$
D. $\frac{e^{\pi / 4}}{2}\left[2 e^{\pi / 4}-\ln 2+2\right]$

Full Syllabus Test 2

16. 10 is the mean of 25 observations. If $1,3,5, \ldots, 49$ are added to corresponding observations, then the new mean is
A. 32
B. 35
C. 39
D. 27
17. The value of $\lim _{x \rightarrow \infty} x^{2} \ln \left(x \cot ^{-1} x\right)$ is
A. $-\frac{1}{3}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $-\frac{2}{3}$
18. A random variable X has probability distribution

X	1	2	3	4	5	6	7	8
$P(X)$	0.13	0.22	0.12	0.21	0.13	0.08	0.06	0.05

If events are $E=\{x$ is an odd number $\}, F=\{x$ is divisible by 3$\}$ and $G=\{x$ is less than 7$\}$, then the value of $P(E \cup(F \cap G))$ is
A. 0.87
B. 0.77
C. 0.52
D. 0.82

Full Syllabus Test 2

19. If $f(x)=\sin ^{4} x+\cos ^{4} x-\frac{1}{2} \sin 2 x$, then the range of $f(x)$ is
A. $\left[0, \frac{3}{2}\right]$
B. $\left[-\frac{1}{2}, \frac{7}{2}\right]$
C. $\left[0, \frac{9}{8}\right]$
D. $\left[\frac{3}{4}, \frac{7}{8}\right]$
20. If $x+y-2=0,2 x-y+1=0$ and $p x+q y-r=0$ are concurrent lines, then the slope of the member in the family of lines $2 p x+3 q y+4 r=0$ which is farthest from the origin is
A. $-\frac{1}{2}$
B. -2
C. $-\frac{2}{3}$
D. $-\frac{3}{10}$
21. The number of solutions of the equation $\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta=0$, where $\theta \in[0,2 \pi]$ is
22. If the equation of the plane containing the lines $x-y-z-4=0, x+y+2 z-4=0$ and parallel to the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$ is $x+A y+B z+C=0$, then the value of $|A+B+C|$ is
23. If the term independent of x in $\left(1+x+x^{-2}+x^{-3}\right)^{10}$ is n, then the last digit of $(n+2)^{3}$ is
24. The number of integral values of a such that $x^{2}+a x+a+1=0$ has integral roots is

Full Syllabus Test 2

25.

If $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then the sum of all the elements of matrix A is
26.

Let $f(x)=\left\{\begin{array}{cc}\frac{b^{3}+b-2 b^{2}-2}{b^{2}+5 b+6}-x^{2} ; & 0 \leq x<1 \\ 3 x-4 ; & 1 \leq x \leq 3\end{array}\right.$
where $b \in \mathbb{R}$. If $f(x)$ has minimum value at $x=1$, then the least integral value of b is
27. Let $f(x)=[3+2 \cos x], x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ where [.] denotes the greatest integer function. The number of point(s) of discontinuity of $f(x)$ is
28. If $e^{x y^{2}}+y \cos x^{2}=5$, then absolute value of $y^{\prime}(0)=$
29. If $\triangle=\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ and $\triangle_{1}=\left|\begin{array}{ccc}1 & 1 & 1 \\ y z & z x & x y \\ x & y & z\end{array}\right|$, then the value of $\triangle_{1}+\triangle=$
30. If the area of the triangle $A B C$ is Δ, such that $b^{2} \sin 2 C+c^{2} \sin 2 B=k \Delta$, then the value of k is

