Subject: Physics Class: Standard XII

1. The stress-strain diagram for two materials A and B are shown here. Select the correct option.

- **A.** 'A' has greater Young's modulus than 'B'
- **B.** 'B' has greater Young's modulus than 'A'
- **C.** 'A' & 'B' has same Young's modulus
- D. Cannot comment
- 2. A brass rod of length $1~\mathrm{m}$ is fixed to a vertical wall at one end, with the other end kept free to expand. When the temperature of the rod increases by $120^{\circ}\mathrm{C}$, the length increases by $3~\mathrm{cm}$. What is the strain?
 - **A.** 0.5
 - **B.** 0.005
 - **c**. 0.05
 - \mathbf{D} . 0

3. Stress generated in a wire when force F_1 acts on it as shown in the figure, is T. Initial cross sectional area of the wire is A_1 . When force F_2 replaces F_1 , cross-sectional area becomes A_2 . Find $\left(\frac{A_2}{A_1}\right)$ if $F_2=6~\mathrm{N}$. [Consider stress generated in the wire to be the same]

- **A**. 3
- **B.** 1/2
- **C**. 4
- **D.** 1/6
- 4. Two cylindrical wires A and B are of the same material. Their lengths are in the ratio 1:2 and the diameters are in the ratio 2:1. If they are pulled by the same force, then increase in their respective lengths will be in the ratio
 - **A.** 2:1
 - **B.** 1:4
 - **C**. 1:8
 - **D.** 8:1

5. The pressure of the confined air in the right leg is P_1 . If the atmospheric pressure is P, then

- **A.** P is equal to P_1
- **B.** P is less than P_1
- **C.** P is greater than P_1
- **D.** P may be less or greater than P_1 depending on the mass of the confined air
- 6. A metallic sphere floats in an immiscible mixture of water and a liquid such that its $\frac{4}{5}$ th volume is in water and $\frac{1}{5}$ th volume is in the liquid. Then, density of the metal is

- $\textbf{A.} \quad 3.5\times 10^3 \ kg/m^3$
- **B.** $1.5 \times 10^3 \text{ kg/m}^3$
- C. $4 \times 10^3 \text{ kg/m}^3$
- D. $2 \times 10^3 \ \mathrm{kg/m^3}$

7. A tank is filled with water upto a height H. Water is allowed to come out of a hole P in one of the walls at a depth h below the surface of water (see figure). Express the horizontal distance X in terms of H and h.

A.
$$X=\sqrt{h(H-h)}$$

$$\textbf{B.} \quad X = \sqrt{\frac{h}{2}(H-h)}$$

C.
$$X=2\sqrt{h(H-h)}$$

D.
$$X=4\sqrt{h(H-h)}$$

8. If the excess pressure inside a soap bubble of radius $1\ \mathrm{cm}$ is balanced by an oil

 $(\rho=0.8~{\rm g/cm}^3)$ column of height $2~{\rm mm},$ then the surface tension of soap solution will be

[Take
$$g=10~\mathrm{m/s}^2$$
]

A.
$$0.02 \text{ N/m}$$

B.
$$0.04 \text{ N/m}$$

$$\textbf{C.} \quad 0.09 \; N/m$$

$$\textbf{D.} \quad 0.08 \; N/m$$

- 9. Water rises to a height h in a capillary tube of area of cross-section a. To what height will the water rise in a capillary tube of area of cross-section 4a?
 - A. $\frac{h}{4}$
 - B. $\frac{h}{2}$
 - **C**. 2h
 - D. 4h

10. A block of ice at temperature $-20^{\circ}\mathrm{C}$ is slowly heated and converted to steam at $100^{\circ}\mathrm{C}$. Which of the following diagrams is most appropriate?

11. A hole is drilled in a copper sheet. The diameter of the hole is $4.24~\rm cm$ at $27~\rm ^{\circ}C$. What is the change in the diameter of the hole when the sheet is heated to $227~\rm ^{\circ}C$?

$$[~lpha=1.70 imes10^{-5}/~^{\circ}\mathrm{C}~].$$

A.
$$1.44 \times 10^{-2} \text{ cm}$$

B.
$$1.96 \times 10^{-2} \text{ cm}$$

$$\textbf{C.} \quad 1.78\times 10^{-2}~cm$$

D.
$$1.28 \times 10^{-2} \text{ cm}$$

12. A uniform copper rod of length $50~\rm cm$ and diameter $3~\rm mm$ is kept on a frictionless horizontal surface at $20~\rm ^{\circ}C$. The coefficient of linear expansion of copper is $2\times 10^{-5}~\rm ^{\circ}C^{-1}$ and Young's modulus is $1.2\times 10^{11}~\rm N/m^2$. The copper rod is heated to $100~\rm ^{\circ}C$, Then, the tension developed in the copper rod is

A.
$$12 \times 10^3 \text{ N}$$

$$\textbf{B.} \quad 36\times10^3~N$$

$$\textbf{C.} \quad 18\times10^3~\text{N}$$

- 13. The root mean square speed of a gas molecule is $300~\mathrm{m/s}$. What will be the root mean square speed of the molecules if the atomic mass is doubled and absolute temperature is halved?
 - **A.** 300 m/s
 - $\textbf{B.} \quad 150 \; m/s$
 - $\textbf{C.} \quad 600 \; \text{m/s}$
 - **D.** 175 m/s
- 14. The temperature of a gas at pressure P and volume V is $27^{\circ}\mathrm{C}$. Keeping its volume constant, if its temperature is raised to $927^{\circ}\mathrm{C}$, then its pressure will be -
 - A. 2P
 - B. $_{3P}$
 - C. 4P
 - D. 6P
- 15. A perfect gas goes from a state A to state B by absorbing 8×10^5 J and by doing 6.5×10^5 J of external work. It is taken from same initial state A to final state B in another process in which it absorbs 10^5 J of heat, then work done in the second process
 - **A.** on gas is 10^5 J
 - **B.** on gas is $0.5 \times 10^5 \ \mathrm{J}$
 - **C.** by gas is 10^5 J
 - **D.** by gas is $0.5 \times 10^5 \, \mathrm{J}$

16. The figure shows the P-V diagram of a thermodynamic cycle for an ideal gas. Which of the following graphs for the corresponding P-T diagram is correct ?

17. A thermodynamic cycle is comprised of four processes $1 \to 2$, $2 \to 3$, $3 \to 4$ and $4 \to 1$. Heat & work interactions of these processes are given as

Process	Heat transfer (J)	Work done (J)
1-2	0	150 (by the gas)
2-3	100 (from the gas)	0
3-4	0	50 (on the gas)
4-1	200 (to the gas)	0

The thermal efficiency of the cycle is -

- A. 20%
- B. 30%
- C. $_{40\,\%}$
- **D.** 50%
- 18. Temperature variation under steady state heat conduction across a composite slab of two materials with thermal conductivities K_1 and K_2 having same cross sectional area is shown in figure. Choose the correct statement.

- **A.** $K_1 > K_2$
- $\mathsf{B.}\quad K_1=K_2$
- **C.** $K_1 = 0$
- **D.** $K_1 < K_2$

- 19. Two spheres A and B having radii $3~\mathrm{cm}$ and $5~\mathrm{cm}$ respectively are coated with carbon black on their outer surface. The wavelengths of maximum intensity of emission of radiation are $300~\mathrm{nm}$ and $500~\mathrm{nm}$ respectively. The respective powers radiated by them are in the ratio of :
 - **A.** $\sqrt{\frac{5}{3}}$
 - **B.** $\frac{5}{3}$
 - $\mathbf{C.} \quad \left(\frac{5}{3}\right)^2$
 - $\mathbf{D.} \quad \left(\frac{5}{3}\right)^4$

BYJU'S The Learning App

JEE Main Part Test 2

20. Instantaneous temperature difference between a cooling body and the surroundings, obeying Newton's law of cooling, is θ . Which of the following represents the variation of ln θ with time t?

- 21. A particle executes SHM with a time period of $4 \, \mathrm{s}$. Find the time taken by the particle to go directly from its mean position to half of its amplitude.
 - **A.** $\frac{1}{6}$ s
 - **B.** $\frac{1}{3}$ s
 - **C.** $\frac{1}{2}$ s
 - **D.** $\frac{2}{5}$ s
- 22. In the given figure, the block is displaced slightly and released. Then, the time period of oscillation is:

- **A.** $T=2\pi\sqrt{rac{2m}{K}}$
- **B.** $T=2\pi\sqrt{rac{m}{K}}$
- C. $T=2\pi\sqrt{rac{m}{2K}}$
- **D.** $T=2\pi\sqrt{rac{m}{3K}}$

23. Which of the following figures represents damped harmonic motion?

24. Find the phase velocity of the wave whose y-x graph is shown at two instants.

- **A.** 10 m/s
- B. $15 \mathrm{m/s}$
- C. $25 \mathrm{m/s}$
- **D.** $20 \mathrm{m/s}$
- 25. Choose the correct option for the given assertion and reason.

Assertion: When a wave travels from a denser medium to rarer medium, its amplitude of oscillation increases.

Reason: In denser medium, speed of wave is less compared to that in rarer medium.

- **A.** Assertion and Reason both are true and the Reason is correct explanation of the Assertion.
- **B.** Assertion and Reason both are true, but Reason is not the correct explantion of Assertion.
- C. Assertion is true, but Reason is false
- **D.** Assertion is false, but Reason is true.

- 26. A 1 $\rm m$ long horizontal rope, having a mass of 40 $\rm g$, is fixed at one end and is tied to a light string at the other end. The tension in the rope is 400 $\rm N$. What will be the wavelengths (in $\rm metres$) in the first and second overtone?
 - **A.** $\frac{3}{4}$, $\frac{3}{4}$
 - B. $\frac{4}{3}, \frac{4}{5}$
 - **C.** $\frac{5}{4}$, $\frac{5}{3}$
 - **D.** $\frac{4}{5}, \frac{4}{3}$
- 27. Rahul is playing the drums. An increase in which of the following properties of the sound produced would result in an increase in loudness?
 - A. Amplitude
 - B. Speed
 - C. Pitch
 - D. Quality
- 28. The first overtone frequency of a closed organ pipe P_1 is equal to the fundamental frequency of an open organ pipe P_2 . If the length of the pipe P_1 is $60 \, \mathrm{cm}$, what will be the length of P_2 ?
 - A. $20 \mathrm{~cm}$
 - **B.** 40 cm
 - **c.** $60 \mathrm{cm}$
 - D. $80 \mathrm{~cm}$

- 29. A tuning fork vibrating at frequency $1000~\mathrm{Hz}$ produces resonance in a resonance column tube. The upper end is open and the lower end is closed by the water whose height can be varied. The successive resonances are observed at lengths $10~\mathrm{cm}$ and $27~\mathrm{cm}$. Then, the speed of sound in air is [neglect end corrections]
 - **A.** 340 m/s
 - **B.** 330 m/s
 - C. $343 \mathrm{m/s}$
 - $\textbf{D.} \quad 353 \; m/s$
- 30. A train moves towards a stationary observer with a speed $34~\mathrm{m/s}$. The train sounds a whistle and its frequency registered by the observer is f_1 . If the speed of the train is reduced to $17~\mathrm{m/s}$, the frequency registered is f_2 . If the speed of sound is $340~\mathrm{m/s}$, then the ratio $\frac{f_1}{f_2}$ is

[Assume, medium is stationary]

- **A.** $\frac{18}{19}$
- **B**. $\frac{1}{2}$
- **C**. 2
- **D.** $\frac{19}{18}$