Subject: Mathematics

- 1. Let P be any point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ such that the absolute difference of the distances of P from the two foci is 12. If the eccentricity of the hyperbola is 2, then the length of the latus rectum is
 - **A.** $4\sqrt{3}$ unit
 - **B.** 18 unit
 - **C.** $2\sqrt{3}$ unit
 - **D.** 36 unit
- 2. A rod of length l moves such that its ends A and B always lie on the lines 3x-y+5=0 and y+5=0 respectively. The locus of the point P, which divides AB internally in the ratio 2:1, is $l^2=\frac{1}{k}(ax-by-5)^2+9(y+5)^2$. Then
 - **A.** k = 4, a + b = 6
 - **B.** k = 3, a + b = 5
 - **C.** k = 4, a + b = 0
 - **D.** k = 3, a + b = 4
- 3. The number of non-negative integral values of b for which the origin and point (1,1) lie on the same side of straight line $a^2x + aby + 1 = 0, \forall \ a \in \mathbb{R} \{0\}$, is
 - **A.** ₁
 - **B**. 3
 - **C.** 2
 - **D.** 5

4. Let from any point P on the line y=x, two tangents are drawn to the circle $(x-2)^2+y^2=1$. Then the chord of contact of P with respect to given circle always passes through a fixed point, whose coordinates are given by

$$\mathbf{A.} \quad \left(\frac{3}{2}, \frac{1}{4}\right)$$

B.
$$\left(-\frac{3}{2}, \frac{1}{4}\right)$$

$$\mathbf{C.} \quad \left(-\frac{3}{2}, \frac{1}{2}\right)$$

$$\mathbf{D.} \quad \left(\frac{3}{2}, \frac{1}{2}\right)$$

5. The line 4x + 3y - 4 = 0 divides the circumference of the circle centred at (5,3), in the ratio 1:2. Then the equation of the circle is

A.
$$x^2 + y^2 - 10x - 6y - 66 = 0$$

$$B. x^2 + y^2 - 10x - 6y + 100 = 0$$

C.
$$x^2 + y^2 - 10x - 6y + 66 = 0$$

D.
$$x^2 + y^2 - 10x - 6y - 100 = 0$$

6. From the point P(2,1), a line of slope $m\in\mathbb{R}$ is drawn so as to cut the circle $x^2+y^2=1$ in points A and B. If the slope m is varied, then the greatest possible value of PA+PB is

A.
$$\frac{2}{\sqrt{5}}$$

B.
$$\frac{10}{\sqrt{5}}$$

C.
$$2\sqrt{5}$$

D.
$$\frac{1}{\sqrt{5}}$$

7. The locus of feet of perpendiculars drawn from the origin to the straight lines passing through (2,1) is

A.
$$x^2 + y^2 - 5y = 0$$

B.
$$x^2 + y^2 - 2x - y = 0$$

C.
$$2x + y - 5 = 0$$

D.
$$x^2 + y^2 + 2x + y = 0$$

8. (2,3) is a point on the side AB of $\triangle ABC$. The third vertex C moves such that the sides AC,BC are bisected by $x^2-y^2=0$ at right angles. Then C lies on

A.
$$2x - 3y = 0$$

B.
$$3x - 2y = 0$$

C.
$$2x + 3y = 0$$

D.
$$3x + 2y = 0$$

9. Tangents are drawn to the ellipse $\frac{x^2}{36} + \frac{y^2}{9} = 1$ from any point on the parabola $y^2 = 4x$. The corresponding chord of contact will touch a parabola, whose equation is

A.
$$y^2 + 4x = 0$$

B.
$$y^2 - 4x = 0$$

C.
$$4y^2 + 9x = 0$$

$$\mathbf{D.} \quad y^2 + 9x = 0$$

- 10. If z_1, z_2, z_3 are the solutions of $z^2 + \overline{z} = z$, then $z_1 + z_2 + z_3$ is equal to (z is a complex number on the Argand plane and $i = \sqrt{-1}$)
 - **A.** 2 + 2i
 - **B.** 2-2i
 - **c**. 0
 - **D**. 2
- 11. If the locus of the middle point of chords of an ellipse $\frac{x^2}{3} + \frac{y^2}{4} = 1$ passing through (2,0) is another ellipse A, then the length of latus rectum of the ellipse A is
 - **A.** $\frac{8}{3}$
 - B. $\sqrt{3}$
 - **c.** $\frac{1}{\sqrt{3}}$
 - **D.** $\frac{3}{8}$
- 12. If z is a complex number, not purely real such that imaginary part of $z-1+rac{1}{z-1}$ is zero, then locus of z is
 - **A.** a straight line parallel to *x*-axis
 - **B.** a circle of radius 1 unit
 - **C.** a parabola with axis of symmetry parallel to x-axis
 - D. a hyperbola

- 13. Let z be an imaginary complex number satisfying |z-1|=1. If $\alpha=2z$, $\beta=2\alpha$ and $\gamma=2\beta$, then the value of $|z|^2+|\alpha|^2+|\beta|^2+|\gamma|^2+|z-2|^2+|\alpha-4|^2+|\beta-8|^2+|\gamma-16|^2$ is
 - **A.** 100
 - **B.** 320
 - $c._{340}$
 - **D.** 400
- 14. The logical statement $[(p \wedge q) o p] o (q \wedge \sim q)$ is
 - A. a tautology
 - B. a contradiction
 - **C.** equivalent to $p \vee q$
 - D. neither a tautology nor a contradiction
- 15. An ellipse has eccentricity $\frac{1}{2}$ and one focus is at the point $P\left(\frac{1}{2},1\right)$. If the common tangent to the circle $x^2+y^2=1$ and hyperbola $x^2-y^2=1$ which is nearer to point P is directrix of the given ellipse, then the co-ordinates of centre of ellipse are
 - $\mathbf{A.} \quad \left(\frac{1}{3}, \frac{1}{3}\right)$
 - $\mathbf{B.} \quad \left(\frac{2}{3}, 1\right)$
 - $\mathbf{C.} \quad \left(\frac{1}{3}, 1\right)$
 - $\mathbf{D.} \quad \left(1, \frac{1}{3}\right)$

16. Complex numbers z_1, z_2, z_3 are the vertices A, B, C respectively, of an isosceles right-angled triangle with right angle at C. Then which of the following is true?

A.
$$(z_1-z_2)^2=(z_1-z_3)(z_3-z_2)$$
.

B.
$$(z_1-z_2)^2=2(z_1-z_3)(z_3-z_2).$$

C.
$$(z_1-z_2)^2=3(z_1-z_3)(z_3-z_2).$$

D.
$$(z_1-z_2)^2=4(z_1-z_3)(z_3-z_2).$$

17. The statement p o (q o p) is logically equivalent to

A.
$$p o (p o q)$$

B.
$$p o (q ee p)$$

C.
$$p o (q \wedge p)$$

D.
$$p o (p \leftrightarrow q)$$

18. Let PQ be a focal chord of parabola $y^2=x$. If the coordinates of P is (4,-2), then the slope of the tangent at Q is

B.
$$_{-4}$$

c.
$$\frac{1}{8}$$

19. For all real permissible values of m, if the straight line $y = mx + \sqrt{9m^2 - 4}$ is tangent to a hyperbola, then equation of the hyperbola can be

A.
$$9x^2 - 4y^2 = 64$$

B.
$$4x^2 - 9y^2 = 64$$

C.
$$9x^2 - 4y^2 = 36$$

D.
$$4x^2 - 9y^2 = 36$$

20. Let z be a complex number such that $|z-2+i| \leq 2$. If m and M denote the least and the greatest value of |z| respectively, then the value of m^2+M^2 is

C.
$$8\sqrt{5}$$

D.
$$4\sqrt{5}$$

21. If the coordinates of the foot of the perpendicular drawn from the point (1,-2) on the line y=2x+1 is (α,β) , then the value of $|\alpha+\beta|$ is

22. If
$$|z_1|=|z_2|$$
 and $\mathrm{arg}igg(rac{z_1}{z_2}igg)=\pi$, then value of z_1+z_2 is

- 23. If y=x be the tangent to the circle $x^2+y^2+2gx+2fy+c=0$ at ponit P such that the distance of P from origin is $4\sqrt{2}$, then the value of c is
- 24. The average marks of 10 students in a class was 60 with a standard deviation of 4, while the average marks of other ten students was 40 with a standard deviation of 6. If all the 20 students are taken together and σ is the combined standard deviation, then the value of $[\sigma]$ is $([\cdot]$ represents the greatest integer function)

- 25. If z is any complex number satisfying $|z-3-2i|\leq 2$, then the minimum value of |2z-6+5i| is
- 26. If d_1 and d_2 are the longest and the shortest distances of the point P(-7,2) from the circle $x^2 + y^2 10x 14y 51 = 0$, then the value of $d_1^2 + d_2^2$ is
- 27. The line x + 2y = 36 is normal to the parabola $x^2 = 12y$ at the point whose distance from the focus of the parabola is
- 28. Let P be a variable point on the ellipse $\frac{x^2}{100} + \frac{y^2}{64} = 1$ with foci F_1 and F_2 . If A is the area of triangle PF_1F_2 , then the maximum possible value of A is
- 29. The minimum value of $f(x)=|x-6|+|x+3|+|x-8|+|x+4|+|x-3|,\ x\in\mathbb{R} \ \text{is}$
- 30. If the line y = mx + a meets the parabola $y^2 = 4ax$ at two points whose abscissa are x_1 and x_2 , then the value of m for which $x_1 + x_2 = 0$ is