Topic : Electrostatics and capacitors

1. A charge ' q ' is placed at one corner of a cube as shown in figure. The flux of electrostatic field \vec{E} though the shaded area is:

A. $\frac{q}{48 \epsilon_{o}}$
B. $\frac{q}{8 \epsilon_{o}}$
C. $\frac{q}{24 \epsilon_{o}}$
D. $\frac{q}{4 \epsilon_{o}}$
2. Two electrons having charge ($-e$) each are fixed at a distance ' 2 d '. A third charge proton placed at the midpoint is displaced slightly by a distance $\mathrm{x}(\mathrm{x} \ll \mathrm{d})$ perpendicular to the line joining the two fixed charges. Proton will execute simple harmonic motion having angular frequency:
($\mathrm{m}=$ mass of charged particle)
A. $\left(\frac{e^{2}}{2 \pi \varepsilon_{o} m d^{3}}\right)^{1 / 2}$
B. $\left(\frac{\pi \varepsilon_{o} m d^{3}}{2 e^{2}}\right)^{1 / 2}$
C. $\left(\frac{2 \pi \varepsilon_{o} m d^{3}}{e^{2}}\right)^{1 / 2}$
D. $\left(\frac{2 e^{2}}{\pi \varepsilon_{o} m d^{3}}\right)^{1 / 2}$
3. A cube of side a has point charges, $+Q$ located at each of its vertices, except at the origin, where the charge is $-Q$. The electric field at the centre of the cube is :

A. $\frac{2 Q}{3 \sqrt{3} \pi \varepsilon_{0} a^{2}}(\hat{x}+\hat{y}+\hat{z})$
B. $\frac{Q}{3 \sqrt{3} \pi \varepsilon_{0} a^{2}}(\hat{x}+\hat{y}+\hat{z})$
C. $\frac{-2 Q}{3 \sqrt{3} \pi \varepsilon_{0} a^{2}}(\hat{x}+\hat{y}+\hat{z})$
D. $\frac{-Q}{3 \sqrt{3} \pi \varepsilon_{0} a^{2}}(\hat{x}+\hat{y}+\hat{z})$
4. Find the electric field E at point P (as shown in figure) on the perpendicular bisector of a uniformly charged thin wire of length L carrying a charge Q.
The distance of the point P from the centre of the rod is $a=\frac{\sqrt{3}}{2} L$.

A. $\frac{Q}{2 \sqrt{3} \pi \varepsilon_{0} L^{2}}$
B. $\frac{\sqrt{3} Q}{4 \pi \varepsilon_{0} L^{2}}$
C. $\frac{Q}{3 \pi \varepsilon_{0} L^{2}}$
D. $\frac{Q}{4 \pi \varepsilon_{0} L^{2}}$
5. Find out the surface charge density at the intersection of point $x=3 \mathrm{~m}$ plane and x - axis in the region of uniform line charge of $8 \mathrm{nC} / \mathrm{m}$ lying along the z - axis in free space.
A. $\quad 47.88 \mathrm{C} / \mathrm{m}$
B. $0.07 \mathrm{nC} \mathrm{m}^{-2}$
C. $0.424 \mathrm{nC} \mathrm{m}^{-2}$
D. $4.0 \mathrm{nC} \mathrm{m}^{-2}$
6. Given below are two statements.

Statement I : An electric dipole is placed at the centre of a hollow sphere. The flux of electric field through the sphere is zero, but electric field is not zero anywhere in the sphere.

Statement $I I$: If R is the radius of a solid metallic sphere and Q be the total charge on it. The electric field at a point on the spherical surface of radius $r(<R)$ is zero, but the electric flux passing through this closed spherical surface of radius r is not zero.

In the light of the above statements, choose the correct answer from the options given below.
A. Statement I is true, but statement $I I$ is false.
B. Statement I is false, but statement $I I$ is true.
C. Both statement I and statement $I I$ are true.
D. Both statement I and statement $I I$ are false.
7. An oil drop of radius 2 mm with a density $3 \mathrm{~g} \mathrm{~cm}^{-3}$ is held stationary under a constant electric field $3.55 \times 10^{5} \mathrm{~V} \mathrm{~m}^{-1}$ in the Millikan's oil drop experiment. What is the number of excess electrons that the oil drop will possess? (Consider $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$)
A. 1.73×10^{10}
B. 48.8×10^{11}
C. 1.73×10^{12}
D. 17.3×10^{10}
8. A solenoid of 1000 turns per metre has a core with relative permeability of 500. Insulated windings of the solenoid carry an electric current of 5 A . The magnetic flux density produced by the solenoid is -
(Permeability of free space $=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$)
A. $2 \pi \times 10^{-3} \mathrm{~T}$
B. $\frac{\pi}{5} \mathrm{~T}$
C. $\pi \times 10^{-4} \mathrm{~T}$
D. $\pi \mathrm{T}$
9. What will be the magnitude of electric field at point O as shown in figure?

Each side of the figure is l and perpendicular to each other?

A. $\frac{1 \quad q}{4 \pi \epsilon_{0} l^{2}}$
B. $\frac{1 \quad q}{4 \pi \epsilon_{0}\left(2 l^{2}\right)}(2 \sqrt{2}-1)$
C. $\frac{q}{4 \pi \epsilon_{0}(2 l)^{2}}$
D. $\frac{1 \quad 2 q}{4 \pi \epsilon_{0} 2 l^{2}}(\sqrt{2})$
10. An electric field of $1000 \mathrm{~V} / \mathrm{m}$, is applied to an electric dipole moment of $10^{-29} \mathrm{C} \cdot \mathrm{m}$. What is the potential energy of the electric dipole?
A. $-20 \times 10^{-18} \mathrm{~J}$
B. $-7 \times 10^{-27} \mathrm{~J}$
C. $-10 \times 10^{-29} \mathrm{~J}$
D. $-9 \times 10^{-20} \mathrm{~J}$
11. A certain charge Q is divided into two parts, q and $Q-q$. How should the charges be divided so that q and $Q-q$ placed at a certain distance apart, experience maximum electrostatic repulsion?
A. $\quad Q=\frac{q}{2}$
B. $Q=2 q$
C. $Q=4 q$
D. $Q=3 q$
12. An electric dipole is placed on x-axis in proximity to a line charge of linear charge density $3.0 \times 10^{-6} \mathrm{C} / \mathrm{m}$. Line charge is placed on z-axis and positive and negative charge of dipole is at a distance of 10 mm and 12 mm from the origin respectively. If total force of 4 N is exerted on the dipole, find out the amount of positive or negative charge of the dipole.
A. 815.1 nC
B. $8.8 \mu \mathrm{C}$
C. 0.485 mC
D. $4.44 \mu \mathrm{C}$
13. The given potentiometer has its wire of resistance 10Ω. When the sliding contact is in the middle of the potentiometer wire, the potential drop across 2Ω resistor is :

A. 10 V
B. 5 V
C. $\frac{40}{9} \mathrm{~V}$
D. $\frac{40}{11} \mathrm{~V}$
14. Two identical tennis balls each having mass ' m ' and charge ' q ' are suspended from a fixed point by threads of length ' l '. What is the equilibrium separation when each thread makes a small angle θ with the vertical?
A. $x=\left(\frac{q^{2} l}{2 \pi \varepsilon_{0} m g}\right)^{\frac{1}{2}}$
B. $x=\left(\frac{q^{2} l}{2 \pi \varepsilon_{0} m g}\right)^{\frac{1}{3}}$
C. $x=\left(\frac{q^{2} l^{2}}{2 \pi \varepsilon_{0} m^{2} g}\right)^{\frac{1}{3}}$
D. $x=\left(\frac{q^{2} l^{2}}{2 \pi \varepsilon_{0} m^{2} g^{2}}\right)^{\frac{1}{3}}$
15. The two thin coaxial rings, each of radius a and having charges $+Q$ and $-Q$ respectively are separated by a distance of s. The potential difference between the centres of the two rings is :
A. $\frac{Q}{4 \pi \varepsilon_{0}}\left[\frac{1}{a}-\frac{1}{\sqrt{s^{2}+a^{2}}}\right]$
B. $\frac{Q}{4 \pi \varepsilon_{0}}\left[\frac{1}{a}+\frac{1}{\sqrt{s^{2}+a^{2}}}\right]$
C. $\frac{Q}{2 \pi \varepsilon_{0}}\left[\frac{1}{a}+\frac{1}{\sqrt{s^{2}+a^{2}}}\right]$
D. $\frac{Q}{2 \pi \varepsilon_{0}}\left[\frac{1}{a}-\frac{1}{\sqrt{s^{2}+a^{2}}}\right]$
16. Two equal capacitors are first connected in series and then in parallel. The ratio of the equivalent capacities in the two cases will be :
A. $2: 1$
B. $1: 4$
C. $3: 1$
D. $3: 2$
17. Consider the combination of 2 capacitors, C_{1} and C_{2}, with $C_{2}>C_{1}$. When connected in parallel, the equivalent capacitance is $\frac{15}{4}$ times the equivalent capacitance of the same capacitors connected in series. Calculate the ratio of capacitors, $\frac{C_{2}}{C_{1}}$.
A. $\frac{15}{11}$
B. $\frac{29}{15}$
C. $\frac{15}{4}$
D. Imaginary
18. In a parallel plate capacitor set up, the plate area of capacitor is $2 \mathrm{~m}^{2}$ and the plates are separated by 1 m . If the space between the plates are filled with a dielectric material of thickness 0.5 m and area $2 \mathrm{~m}^{2}$ (see figue) the capacitance of the set-up will be $n \epsilon_{0}$. The value of n is
(Dielectric constant of the material $=3.2$) (Round off to the Nearest Integer)

19. A parallel plate capacitor whose capacitance C is 14 pF is charged by a battery to a potential difference $V=12 \mathrm{~V}$ between its plates. The charging battery is now disconnected and a porcelain plate with $k=7$ is inserted between the plates, then the porcelain plate would oscillate back and forth between the plates of capacitor, with a constant mechanical energy of
\qquad pJ.
(Assume no friction)
20. Four identical rectangular plates with length, $l=2 \mathrm{~cm}$ and breadth, $b=3 / 2 \mathrm{~cm}$ are arranged as shown in the figure. The equivalent capacitance between P and R is $\frac{x \times 10^{-2} \epsilon_{0}}{d}$ where d is the distance between the plates in cm . The value of x is \qquad .
(Round off to the nearest integer)

21. A simple pendulum of mass ' m^{\prime}, length ' l ' and charge ${ }^{\prime}+q^{\prime}$ suspended in the electric field produced by two conducting parallel plates as shown in the figure. The value of deflection of pendulum in equilibrium position will be (C_{1} and C_{2} are the capacitance of capacitors formed by parallel plates, without medium in between and with medium in between, respectively.)

A. $\tan ^{-1}\left[\frac{q}{m g} \times \frac{C_{1}\left(V_{2}-V_{1}\right)}{\left(C_{1}+C_{2}\right)(d-t)}\right]$
B. $\tan ^{-1}\left[\frac{q}{m g} \times \frac{C_{2}\left(V_{2}-V_{1}\right)}{\left(C_{1}+C_{2}\right)(d-t)}\right]$
C. $\tan ^{-1}\left[\frac{q}{m g} \times \frac{C_{2}\left(V_{1}+V_{2}\right)}{\left(C_{1}+C_{2}\right)(d-t)}\right]$
D. $\tan ^{-1}\left[\frac{q}{m g} \times \frac{C_{1}\left(V_{1}+V_{2}\right)}{\left(C_{1}+C_{2}\right)(d-t)}\right]$
22. An ideal cell of emf 10 V is connected in circuit shown in figure. Each resistance is 2Ω. The potential difference (in V) across the capacitor when it is fully charged is

23. AC voltage, $V(t)=20 \sin (\omega t)$, of frequency 50 Hz , is applied to a parallel plate capacitor. The separation between the plates is 2 mm and the area of the plates is $1 \mathrm{~m}^{2}$. The amplitude of the oscillating displacement current, for the applied AC voltage is -

Take $\epsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
A. $\quad 21.14 \mu \mathrm{~A}$
B. $83.37 \mu \mathrm{~A}$
C. $\quad 27.79 \mu \mathrm{~A}$
D. $\quad 55.58 \mu \mathrm{~A}$
24. A current of 5 A is passing through a non-linear magnesium wire of crosssection $0.04 \mathrm{~m}^{2}$. At every point, the direction of current density is at an angle of 60°, with the unit vector of area of cross-section. The magnitude of electric field at every point of the conductor is :

Resistivity of magnesium is $44 \times 10^{-8} \Omega-\mathrm{m}$.
A. $11 \times 10^{-2} \mathrm{~V} / \mathrm{m}$
B. $11 \times 10^{-7} \mathrm{~V} / \mathrm{m}$
C. $11 \times 10^{-5} \mathrm{~V} / \mathrm{m}$
D. $11 \times 10^{-3} \mathrm{~V} / \mathrm{m}$
25. A parallel plate capacitor, with plate area ' A^{\prime} and distance of separation ' d^{\prime}, is filled with a dielectric. What is the capacity of the capacitor when permittivity of the dielectric varies as follows:
$\epsilon(x)=\epsilon_{0}+k x$, for $\left(0<x \leq \frac{d}{2}\right)$
$\epsilon(x)=\epsilon_{0}+k(d-x)$, for $\left(\frac{d}{2} \leq x \leq d\right)$
A. $\left(\epsilon_{0} \frac{k d}{2}\right)^{\frac{2}{k a}}$
B. $\frac{k A}{2 \ln \left(\frac{2 \epsilon_{0}+k d}{2 \epsilon_{0}}\right)}$
C. 0
D. $\frac{k A}{2} \ln \left(\frac{2 \epsilon_{0}}{2 \epsilon_{0}-k d}\right)$
26. If q_{f} is the free charge on the capacitor plates and q_{b} is the bound charge on the dielectric slab of dielectric constant K placed between the capacitor plates, then bound charge q_{b} can be expressed as
A. $q_{b}=q_{f}\left(1-\frac{1}{\sqrt{K}}\right)$
B. $q_{b}=q_{f}\left(1-\frac{1}{K}\right)$
C. $q_{b}=q_{f}\left(1+\frac{1}{\sqrt{K}}\right)$
D. $q_{b}=q_{f}\left(1+\frac{1}{K}\right)$
27. In the reported figure, a capacitor is formed by placing a compound dielectric between the plates of parallel plate capacitor. The expression for the capacity of the said capacitor will be :
(Given area of plate $=A$)

C_{1}	C_{2}	C_{3}
K	3 K	5K

A. $\frac{15 K \varepsilon_{0} A}{34 d}$
B. $\frac{15 K \varepsilon_{0} A}{6 d}$
C. $\frac{25 K \varepsilon_{0} A}{6 \quad d}$
D. $\frac{9 K \varepsilon_{0} A}{6 d}$
28. Two capacitors of capacities $2 C$ and C are joined in parallel and charged up to potential V. The battery is removed and the capacitor of capacity C is filled completely with a medium of dielectric constant K. The potential difference across the capacitors will now be :
A. $\frac{V}{K+2}$
B. $\frac{V}{K}$
C. $\frac{3 V}{K+2}$
D. $\frac{3 V}{K}$
29. The material filled between the plates of a parallel plate capacitor has resistivity $200 \Omega \mathrm{~m}$. The value of capacitance of the capacitor is $2 p F$. If a potential difference of 40 V is applied across the plates of the capacitor, then the value of leakage current flowing out of the capacitor is :
[Given the value of relative permitivity of material $(k=50)$]
A. $\quad 9.0 \mathrm{~mA}$
B. $\quad 0.9 \mathrm{~mA}$
C. $0.9 \mu \mathrm{~A}$
D. $9.0 \mu \mathrm{~A}$
30. Three capacitors $C_{1}=2 \mu \mathrm{~F}, C_{2}=6 \mu \mathrm{~F}$ and $C_{3}=12 \mu \mathrm{~F}$ are connected as shown in figure. Find the ratio of the charges on capacitors C_{1}, C_{2} and C_{3} respectively

A. $3: 4: 4$
B. $2: 3: 3$
C. $2: 1: 1$
D. $1: 2: 2$

