

Topic : Electrostatics and capacitors

1. A charge 'q' is placed at one corner of a cube as shown in figure. The flux of electrostatic field \overrightarrow{E} though the shaded area is:

2. Two electrons having charge (-e) each are fixed at a distance '2d'. A third charge proton placed at the midpoint is displaced slightly by a distance x (x << d) perpendicular to the line joining the two fixed charges. Proton will execute simple harmonic motion having angular frequency: (m = mass of charged particle)

A.
$$\left(\frac{e^2}{2\pi\varepsilon_o m d^3}\right)^{1/2}$$

B. $\left(\frac{\pi\varepsilon_o m d^3}{2e^2}\right)^{1/2}$
C. $\left(\frac{2\pi\varepsilon_o m d^3}{e^2}\right)^{1/2}$
D. $\left(\frac{2e^2}{\pi\varepsilon_o m d^3}\right)^{1/2}$

3. A cube of side *a* has point charges, +Q located at each of its vertices, except at the origin, where the charge is -Q. The electric field at the centre of the cube is :

A.
$$\frac{2Q}{3\sqrt{3}\pi\varepsilon_0 a^2}(\hat{x}+\hat{y}+\hat{z})$$

- $\textbf{B.} \quad \frac{Q}{3\sqrt{3}\pi\varepsilon_0 a^2}(\hat{x}+\hat{y}+\hat{z})$
- C. $\frac{-2Q}{3\sqrt{3}\pi\varepsilon_0 a^2}(\hat{x}+\hat{y}+\hat{z})$

D.
$$\frac{-Q}{3\sqrt{3}\pi\varepsilon_0 a^2}(\hat{x}+\hat{y}+\hat{z})$$

4. Find the electric field E at point P (as shown in figure) on the perpendicular bisector of a uniformly charged thin wire of length L carrying a charge Q.

The distance of the point *P* from the centre of the rod is $a = \frac{\sqrt{3}}{2}L$.

A.
$$\frac{Q}{2\sqrt{3}\pi\varepsilon_0 L^2}$$

B.
$$\frac{\sqrt{3Q}}{4\pi\varepsilon_0 L^2}$$

$$C. \quad \frac{Q}{3\pi\varepsilon_0 L^2}$$

D.
$$\frac{Q}{4\pi\varepsilon_0 L^2}$$

- 5. Find out the surface charge density at the intersection of point x = 3 mplane and x - axis in the region of uniform line charge of 8 nC/m lying along the z - axis in free space.
 - **A.** 47.88 C/m
 - **B.** 0.07 nC m^{-2}
 - **C.** 0.424 nC m^{-2}
 - **D.** 4.0 nC m^{-2}

6. Given below are two statements.

Statement I: An electric dipole is placed at the centre of a hollow sphere. The flux of electric field through the sphere is zero, but electric field is not zero anywhere in the sphere.

Statement *II* : If *R* is the radius of a solid metallic sphere and *Q* be the total charge on it. The electric field at a point on the spherical surface of radius r (< R) is zero, but the electric flux passing through this closed spherical surface of radius *r* is not zero.

In the light of the above statements, choose the correct answer from the options given below.

- A. Statement *I* is true, but statement *II* is false.
- **B.** Statement *I* is false, but statement *II* is true.
- **C.** Both statement *I* and statement *II* are true.
- **D.** Both statement *I* and statement *II* are false.
- 7. An oil drop of radius 2 mm with a density 3 g cm^{-3} is held stationary under a constant electric field $3.55 \times 10^5 \text{ V m}^{-1}$ in the Millikan's oil drop experiment. What is the number of excess electrons that the oil drop will possess? (Consider $g = 9.81 \text{ m s}^{-2}$)
 - A. 1.73×10^{10}
 - **B.** 48.8×10^{11}
 - C. 1.73×10^{12}
 - **D.** 17.3×10^{10}

 A solenoid of 1000 turns per metre has a core with relative permeability of 500. Insulated windings of the solenoid carry an electric current of 5 A. The magnetic flux density produced by the solenoid is -

(Permeability of free space $= 4\pi imes 10^{-7}~{
m H/m})$

- **A.** $2\pi \times 10^{-3} \text{ T}$ **B.** $\frac{\pi}{5}$ T **C.** $\pi \times 10^{-4}$ T **D.** π T
- 9. What will be the magnitude of electric field at point *O* as shown in figure? Each side of the figure is *l* and perpendicular to each other ?

A.
$$\frac{1}{4\pi\epsilon_0} \frac{q}{l^2}$$
B.
$$\frac{1}{4\pi\epsilon_0} \frac{q}{(2l^2)} \left(2\sqrt{2} - 1\right)$$
C.
$$\frac{q}{4\pi\epsilon_0(2l)^2}$$

$$\mathbf{D.} \quad \frac{1}{4\pi\epsilon_0} \frac{2q}{2l^2} \left(\sqrt{2}\right)$$

Copyright © Think and Learn Pvt. Ltd.

- 10. An electric field of 1000 V/m, is applied to an electric dipole moment of $10^{-29} C \cdot m$. What is the potential energy of the electric dipole?
 - A. $-20 \times 10^{-18} J$ B. $-7 \times 10^{-27} J$ C. $-10 \times 10^{-29} J$ D. $-9 \times 10^{-20} J$
- 11. A certain charge Q is divided into two parts, q and Q q. How should the charges be divided so that q and Q q placed at a certain distance apart, experience maximum electrostatic repulsion?
 - A. $Q = \frac{q}{2}$
 - $\textbf{B.} \quad Q=2q$
 - C. Q=4q

D.
$$Q = 3q$$

- 12. An electric dipole is placed on x-axis in proximity to a line charge of linear charge density 3.0×10^{-6} C/m. Line charge is placed on z-axis and positive and negative charge of dipole is at a distance of 10 mm and 12 mm from the origin respectively. If total force of 4 N is exerted on the dipole, find out the amount of positive or negative charge of the dipole.
 - **A.** 815.1 nC
 - **Β.** 8.8 μC
 - **C.** 0.485 mC
 - **D.** 4.44 μC

13. The given potentiometer has its wire of resistance 10Ω . When the sliding contact is in the middle of the potentiometer wire, the potential drop across 2Ω resistor is :

14. Two identical tennis balls each having mass 'm' and charge 'q' are suspended from a fixed point by threads of length 'l'. What is the equilibrium separation when each thread makes a small angle θ with the vertical ?

A.
$$x = \left(\frac{q^2l}{2\pi\varepsilon_0 mg}\right)^{\frac{1}{2}}$$

B. $x = \left(\frac{q^2l}{2\pi\varepsilon_0 mg}\right)^{\frac{1}{3}}$
C. $x = \left(\frac{q^2l^2}{2\pi\varepsilon_0 m^2g}\right)^{\frac{1}{3}}$
D. $x = \left(\frac{q^2l^2}{2\pi\varepsilon_0 m^2g^2}\right)^{\frac{1}{3}}$

15. The two thin coaxial rings, each of radius a and having charges +Q and -Q respectively are separated by a distance of s. The potential difference between the centres of the two rings is :

$$A. \quad \frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{a} - \frac{1}{\sqrt{s^2 + a^2}} \right]$$
$$B. \quad \frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{a} + \frac{1}{\sqrt{s^2 + a^2}} \right]$$
$$C. \quad \frac{Q}{2\pi\varepsilon_0} \left[\frac{1}{a} + \frac{1}{\sqrt{s^2 + a^2}} \right]$$
$$D. \quad \frac{Q}{2\pi\varepsilon_0} \left[\frac{1}{a} - \frac{1}{\sqrt{s^2 + a^2}} \right]$$

- 16. Two equal capacitors are first connected in series and then in parallel. The ratio of the equivalent capacities in the two cases will be :
 - A. 2:1
 B. 1:4
 C. 3:1
 D. 3:2
- 17. Consider the combination of 2 capacitors, C_1 and C_2 , with $C_2 > C_1$. When connected in parallel, the equivalent capacitance is $\frac{15}{4}$ times the equivalent capacitance of the same capacitors connected in series. Calculate the ratio of capacitors, $\frac{C_2}{C_1}$.

A. $\frac{15}{11}$ **B.** $\frac{29}{15}$ **C.** $\frac{15}{4}$ **D.** Imaginary

18. In a parallel plate capacitor set up, the plate area of capacitor is 2 m^2 and the plates are separated by 1 m. If the space between the plates are filled with a dielectric material of thickness 0.5 m and area 2 m^2 (see figue) the capacitance of the set-up will be $n\epsilon_0$. The value of *n* is (Dielectric constant of the material = 3.2) (Round off to the Nearest Integer)

19. A parallel plate capacitor whose capacitance C is 14 pF is charged by a battery to a potential difference V = 12 V between its plates. The charging battery is now disconnected and a porcelain plate with k = 7 is inserted between the plates, then the porcelain plate would oscillate back and forth between the plates of capacitor, with a constant mechanical energy of

_____ pJ. (Assume no friction)

20. Four identical rectangular plates with length, l = 2 cm and breadth, b = 3/2 cm are arranged as shown in the figure. The equivalent capacitance between *P* and *R* is $\frac{x \times 10^{-2} \epsilon_0}{d}$ where *d* is the distance between the plates in cm. The value of *x* is _____.

(Round off to the nearest integer)

21. A simple pendulum of mass 'm', length 'l' and charge ' + q' suspended in the electric field produced by two conducting parallel plates as shown in the figure. The value of deflection of pendulum in equilibrium position will be $(C_1 \text{ and } C_2 \text{ are the capacitance of capacitors formed by parallel plates,}$ without medium in between and with medium in between, respectively.)

22. An ideal cell of emf 10 V is connected in circuit shown in figure. Each resistance is 2 Ω . The potential difference (in V) across the capacitor when it is fully charged is

23. AC voltage, $V(t) = 20 \sin(\omega t)$, of frequency 50 Hz, is applied to a parallel plate capacitor. The separation between the plates is 2 mm and the area of the plates is 1 m². The amplitude of the oscillating displacement current, for the applied AC voltage is -

Take $\epsilon_0 = 8.85 imes 10^{-12} \ \mathrm{F/m}$

A. $_{21.14 \ \mu A}$

Β. 83.37 μA

C. $_{27.79 \ \mu A}$

D. $55.58 \mu A$

24. A current of 5 A is passing through a non-linear magnesium wire of crosssection 0.04 m^2 . At every point, the direction of current density is at an angle of 60° , with the unit vector of area of cross-section. The magnitude of electric field at every point of the conductor is :

Resistivity of magnesium is $44 \times 10^{-8} \ \Omega$ -m.

- **A.** $11 \times 10^{-2} \text{ V/m}$
- **B.** $11 \times 10^{-7} \text{ V/m}$
- C. $11 \times 10^{-5} \text{ V/m}$
- **D.** $11 \times 10^{-3} \, V/m$

25. A parallel plate capacitor, with plate area 'A' and distance of separation 'd', is filled with a dielectric. What is the capacity of the capacitor when permittivity of the dielectric varies as follows:

$$egin{aligned} \epsilon(x) &= \epsilon_0 + kx, \, ext{for} \, \left(0 < x \leq rac{d}{2}
ight) \ \epsilon(x) &= \epsilon_0 + k(d-x), \, ext{for} \, \left(rac{d}{2} \leq x \leq d
ight) \ \mathbf{A} \quad \left(- kd
ight)^{rac{2}{k \, a}} \end{aligned}$$

$$\mathbf{B.} \quad \frac{kA}{2\ln\left(\frac{2\epsilon_0 + kd}{2\epsilon_0}\right)}$$

C. 0

D.
$$\frac{kA}{2}ln\left(\frac{2\epsilon_0}{2\epsilon_0-kd}\right)$$

26. If q_f is the free charge on the capacitor plates and q_b is the bound charge on the dielectric slab of dielectric constant *K* placed between the capacitor plates, then bound charge q_b can be expressed as

A.
$$q_b = q_f \left(1 - \frac{1}{\sqrt{K}}\right)$$

B. $q_b = q_f \left(1 - \frac{1}{K}\right)$
C. $q_b = q_f \left(1 + \frac{1}{\sqrt{K}}\right)$
D. $q_b = q_f \left(1 + \frac{1}{K}\right)$

27. In the reported figure, a capacitor is formed by placing a compound dielectric between the plates of parallel plate capacitor. The expression for the capacity of the said capacitor will be : (Given area of plate = A)

$$\begin{array}{c|c} C_1 & C_2 & C_3 \\ \hline K & 3K & 5K \\ \hline - d \rightarrow - 2d \rightarrow - 3d \rightarrow \end{array}$$

- $\begin{array}{rl} \mathbf{A.} & \frac{15 \, K \varepsilon_0 A}{34 \ d} \\ \mathbf{B.} & \frac{15 \, K \varepsilon_0 A}{6 \ d} \\ \mathbf{C.} & \frac{25 \, K \varepsilon_0 A}{6 \ d} \\ \mathbf{D.} & \frac{9 \, K \varepsilon_0 A}{6 \ d} \end{array}$
- 28. Two capacitors of capacities 2C and C are joined in parallel and charged up to potential V. The battery is removed and the capacitor of capacity C is filled completely with a medium of dielectric constant K. The potential difference across the capacitors will now be :

A.
$$\frac{V}{K+2}$$

B.
$$\frac{V}{K}$$

C.
$$\frac{3V}{K+2}$$

D.
$$\frac{3V}{K}$$

Copyright © Think and Learn Pvt. Ltd.

- 29. The material filled between the plates of a parallel plate capacitor has resistivity 200 Ω m. The value of capacitance of the capacitor is 2 *pF*. If a potential difference of 40 V is applied across the plates of the capacitor, then the value of leakage current flowing out of the capacitor is : [Given the value of relative permitivity of material (k = 50)]
 - **A.** 9.0 mA
 - **B.** 0.9 mA
 - **C**. $0.9 \ \mu A$
 - **D.** 9.0 µA
- 30. Three capacitors $C_1 = 2\mu F$, $C_2 = 6\mu F$ and $C_3 = 12\mu F$ are connected as shown in figure. Find the ratio of the charges on capacitors C_1 , C_2 and C_3 respectively

- **A.** 3:4:4
- **B.** 2:3:3
- **C.** 2:1:1
- **D.** 1:2:2