

SOLID STATE

Seven Crystal System :-

Name of System	Axes	Angle	Forms of Lattices
1. Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	Primitive,
			Face-Centred
			Body Centred 3
2. Tetragonal	a = b / c	$\alpha = \beta = \gamma = 90^{\circ}$	Primitive,
			Body Centred 2
3. Rhombohedral	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	Primitive] 1
or Trigonal			
4. Orthorhombic	a∠b∠c	$\alpha - \beta - \gamma - 90$	Primitive,
			Face-entred
			Body centred
			End centred
5. Monoclinic	a ≠b ≠c	$\alpha = \gamma = 90^{\circ}$	Primitive,
		$\beta \neq 90^{\circ}, \pm 120^{\circ}, \pm 60^{\circ}$	End centred 2
6. Triclinic	a ≠b ≠c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Primitive] 1
7. Hexagonal	a = b ′ c	$\alpha - \beta - 90^{\circ}$	Primitive] 1
		$\gamma = 120^{\circ}$	Total = 14

Geometry of a cube

Contribution of atom at

Number of corners = 8	different sites of cube
Number of faces = 6	At corner = 1/8
Number of edges = 12	at face = $1/2$
Number of cube centre = 1	at edge = 1/4
Number of cube diagonals = 4	At body centre = 1
Number of face diagonals = 12	

Simple Cubic Cell (SCC)Body centred Cubic Cell (BCC)Eace centred Cubi (SCC + Face Centred Cubic (SCC + Face Centred - BCC)Eace centred - BCC)Eace centred Cubic (SCC + Face Centred - BCC)Eace				
$ \begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $		Simple Cubic Cell (SCC)	Body centred Cubic Cell (BCC) (SCC – Body centred = BCC)	Face ventred Cubic Cell (FCC) (SCC + Face Centred = FCC)
$= 8 \times 1/8 = 1$ $= (8 \times 1/8) - (1 \times 1) = 2$ $= (3 \times 1/8) - (1 \times 1) = 2$ d_D d_D 6 6 6 8 8 a $2r$ a a r $\frac{\pi}{6}$ or 52.4% $\frac{\pi}{6}$ or 68%	(Famatry	A a = 2r		$4r = \overline{2}a$
Io.6E12a $2r$ $4r = \overline{3} a$ 12 y $\frac{\pi}{6}$ or 52.4% $\frac{\sqrt{3}\pi}{8}$ or 68% $\frac{\pi}{3.72}$ or 58%	Number of atoms per mit cell (n)		$= (8 \times 1/8) - (1 \times 1) = 2$ corners budy contro	$= (8 \times 1/8) - (6 \times 1/2) = 4$ corner face centre
a $2r$ $4r = \overline{3}a$ y $\frac{\pi}{6}$ or 52.4% $\frac{\sqrt{3}\pi}{8}$ or 68%	Co - Ordination No.	9	R	12
$\frac{\pi}{6} \text{ or } 52.4\%$ $\frac{\sqrt{3}\pi}{8} \text{ or } 68\%$	Relation between a and r		$4r=\overline{3}a$	$4r = \sqrt{2}a$
-	Packing efficiency $P.E. = \frac{11 \times 4 / 3_{ii}r}{V = n}$	<u>π</u> or 52,4%	$\frac{\sqrt{3}\pi}{8}$ or 68%	<u>π</u> 3√2 or 74‰

Types of unit cell (Bravais Lattice)

Density of the unit cell = $\frac{n \times M}{V \times N_A}$ g cm⁻³ Where M = Molecular weight or atomic weight

Three dimensional close packing

Contents	BCC	CCP/FCC	НСР
Type of packing	pe of packing ABAB		ABAB
	Packing	Close Packing	Close Packing
	but not		
	close packing		
No. of Atoms	2	4	6
Co-Ordination No.	8	12	12
Packing efficiency	68%	74%	74%
Examples	IA, BA	Ca, Sr, Al	Remaining
	V & Cr group	Co Group,	d-Block
	Fe	Ni group,	Elements
		Copper group	Be & Mg
		All inert gases	
		Except helium	

Note : Only Mn crystallizes in S.C.C. Voids in close packing structure :

per atom $iggle{2}$ Tetrahedral void 10ctahedral void			
Limiting Radius Ratio = r/R	Coordination Number of Cation	Structural Arrangement (Geometry of Voids)	Example
0.155 - 0.225	3	Plane Trigonal	Boron Oxides (B ₂ O ₃)
0.225 - 0.414	4	Tetrahedral	ZnS, SiO ₂
0.414 - 0.732	6	Octahedral	NaCl, MgO ₂
0.732 - 1.000	8	Cubic	CsCl

NaCl Type :

For NaCl : Distance between two nearest ions (r⁺ + r⁻) :- $2r^+ + 2r^- = a$

i.e. $r^+ + r^- = \frac{a}{2}$

CsCl Type :

For CsCl : Distance between two nearest ions (r⁺ + r⁻) :-

$$2r^{+} + 2r^{-} = \sqrt{3a}$$
 i.e. $r^{+} + r^{-} = \frac{\sqrt{3a}}{2}$

Defects or Imperfections in Solids :

Schottky			-	Frenkel defect			F-Centre	
Equal number of cations and anions are missing from their respective position leaving behind a Pair of holes		This type of defect is created when an ion levels its appropriate site in the lattice and occupies an interstitial site			excess m anion (ne absent fro lattice sit	und may have etal in ion if an gative ion) is om its appropriate e creating a 'void' occupied by an		
Density decreased C. No. is high L.R.R. is high Electrically neutral Ex. NaCl. CsCl, KCl, KBr		C. No L.R.F Electr Ex. Z	Density unchanged C. No. is low L.R.R. is low Electrically neutral Ex. ZnS, AgBr, AgCl etc.		Ex. NaCl KCl – Vo	– Yellow ilet		
	Examples	Halides of (Li, Na, K, Rb) Oxides and sulphides of II - A (Some exception) AgF, AgCl, AgBr, NH,X	Halides of 'Cs' TICI, TIBr, CaS	BeS, BeO, CaO, AgI, CuCl, CuBr, CuI	BaCl ₃ , BaF ₂ SrCl ₂ , SrF ₂ CaCl ₂ , CaF ₂	Li ₂ O, Li ₂ S Na ₂ O, Na ₂ S K ₂ O, K ₂ S	Same as sphalerite	
ų	No. of formula's per U.C.C.	4Na ⁺ + 4Cl ⁻ 4NaCl (4)	1Cs ⁺ + 1Cl ⁻ 1CsCl (1)	4Zn ⁺² + 4S ⁻² 4ZnS (4)	4Ca ⁺² + 8F ⁻ 4CaF ₁ (4)	8Na ⁺ + 40 ⁻² 4Na ₂ O (4)	6Zn ⁺² + 6S ⁻² 6ZnS (6)	
PES OF IONIC CRYSTAL	Co-ordination Number	ي : و	8 : 8	4:4	4Ca ⁺² ,8F	8Na ⁺ , 40 ⁻² 8 : 4	4:4	
B. TYPES OF IC	Geometry	C.C.PT_Cl ⁻ - every element of C.C.P. L_Na ⁺ - at every OHV	B.C.C. [–] CC ¹ - at every corner B.C.C. [–] Cs ⁺ - at body centre or at cubic void	C.C.P. $\int S^2$ - every element of C.C.P. C.C.P. $\sum Dn^{-1} = 1.50\%$ of T.H.V. or at alternate tetrahedral void	C.C.PT_Ca ⁺² - every element of C.C.P. C.C.PT_F - at every T.H.V.	C.C.PC.Na ⁺ - at every T.H.V.	C.C.P. $- \sum_{Zn^{12}}^{S^{-2}}$ - every element of H.C.P. $- \sum_{Zn^{12}}^{12}$ - 50% of T.H.V. or (at alternate T.H.V.)	
	Type of Ionic Crystal	NaCl (1 : 1) (Rock Salt Type)	CsCl Type (1:1)	ZnS Type (1 : 1) (Zinc Blende Type) (Sphalerite)	CaF ₂ Type (1 : 2) (Fluorite Type)	Na ₂ O Type (2 : 1) (Antifluorite)	ZnS Type (1 : 1) (Wurtzite another geometry of ZnS	

SOLUTION

1. % by wt. = $\frac{Wt.of the solute(ing)}{Wt.of the solution(ing)} \times 100$ 2. % by wt./vol. = $\frac{Wt.of solute(ing)}{Vol.of solution(incc)} \times 100$ 3. % by volume = $\frac{Vol.of solute(incc)}{Vol.of the solution(incc)} \times 100$ 4. Molarity = $\frac{Moles of solute(ingm)}{Vol.of the solute(ingm)}$ where moles = $\frac{Mass of the solute(ing)}{Molecular mass of the solute}$ 5. Normality = $\frac{Gram equivalents of the solute}{Vol.of the solution(incc)} \times 1000$

where gm eq. = <u>Eq.massof the solute (ing)</u>

6. Molality =
$$\frac{\text{Moles of solute}}{\text{Mass of the solvent(ing)}} \times 1000$$

7. Mole fraction of solute in solution $(x_2) = \frac{n_2}{n_1 + n_2} = \frac{w_2 / M_2}{w_1 / M_1 + w_2 / M_2}$

Mole fraction of solvent in solution (x₁) = $\frac{n_1}{n_1 + n_2} = \frac{w_1 / M_1}{w_1 / M_1 + w_2 / M_2}$

where w_1 , M_1 are mass and molecular mass of solvent and w_2 , M_2 for the solute. $x_1 + x_2 = 1$. In general, for a solution containing many components (A, B, C.....), mole fraction of A

 $(x_A) = \frac{n_A}{n_A + n_B + n_C + \dots}$ and so on. $x_A + x_B + \dots = 1$. Strength (g/L) = N × eq. wt. Strength (g/L) = M × mol. wt.

8. Mass fraction of component A $(x_A) = \frac{W_A}{W_A + W_B}$ Mass fraction of component B $(x_B) = \frac{W_B}{W_A + W_B}$ $x_A + x_B = 1$

9. Parts per million (ppm) = $\frac{\text{Mass of solute}}{\text{Mass of solution}} \times 10^6 \simeq \frac{\text{Volume of solute}}{\text{Volume of solution}} \times 10^6$

- **10.** Normality equation (for dilution of a solution or for a complete reaction between two solutions) $N_1V_1 = N_2V_2$
- **11.** Molarity equation (for dilution of a solution) $M_1V_1 = M_2V_2$
- **12.** If V_1 cc of a solution with normality N_1 is mixed with V_2 cc of the solution with normality N_2 , then normality N_3 of the final solution can be calculated using. $N_1V_1 + N_2V_2 = N_3 (V_1 + V_2).$
- **13.** Molality mole fraction and mass fraction do not change with temperature because they involve weights, Normality and molarity change with temperature because they involve volume.
- 14. One molar (1M) aqueous solution is more concentrated than one molal aqueous (1m) solution of the same solute. This is because 1M solution contains 1 mole of the solute in 1000cc of the solution which includes the solute i.e., mass of solvent is less than 1000g (as density of $H_2O = 1g / cc$). However, in case of non aqueous solution 1M > < 1m or 1M = 1m depending upon the density of the solutions
- **15.** Alloys are solution of solids in solids.
- 16. According to Raoult's law, for solution containing volatile components A and B $p_A = x_A p_A^\circ and p_B = x_B p_B^\circ$ $P_{Total} = p_A + p_B = x_A p_A^\circ + x_B p_B^\circ = (1-x_B) p_A^\circ + x_B p_B^\circ = (p_B^\circ - p_A^\circ) x_B + p_A^\circ$
- 17. Raoult's law for non-volaltile solute containing solution.

$$\frac{p^{\circ} - p_{s}}{p^{\circ}} = \frac{n_{2}}{n_{1} + n_{2}} \approx \frac{n_{2}}{n_{1}} \text{ (if solution is dilute i.e., < 5 \%)}$$
$$= \frac{w_{2} / M_{2}}{w_{1} / M_{1} + w_{2} / M_{2}} \approx \frac{w_{2} / M_{2}}{w_{1} / M_{1}} \text{ (if solution is dilute)}$$

18. Osmotic pressure P or π = C.RT C = molar conc. T = temp. in K, R = 0.082 L atm K⁻¹ mol⁻¹ (if P is in atm and vol. of solution in litres) or 8.314 JK⁻¹ mol⁻¹ (if P is in Nm⁻² or Pascals and vol. in m³)

- **19.** Isotonic solutions have same osmotic pressure and same molar concentIsotonic solutions have same osmotic pressure and same molar concentrations. If one solution has lower osmotic pressure, it is called hypotonic with respect to the more concentrated solution. The more concentrated solution is said to be hypertonic with respect to the dilute solution. $\pi_1 = \pi_2$ Isotonic solution.rations. If one solution has lower osmotic pressure, it is called hypotonic with respect to the dilute solution. $\pi_1 = \pi_2$ Isotonic solution.rations. If one solution has lower osmotic pressure, it is called hypotonic with respect to the more concentrated solution is said to be hypertonic. The more concentrated solution is solution. The more concentrated solution is solution.
- **20.** Elevation in boiling point, $\Delta T_b = K_b m$ where $K_b = molal$ elevation constant and m = molality of the solution.
- **21.** Depression in freezing point, $\Delta T_f = K_f m$ where $K_f = molal$ depression constant and m = molality of the solution.

22.
$$K_{b} = \frac{RT_{b}^{2}}{1000I_{v}} = \frac{M_{1}RT_{b}^{2}}{1000 \Delta H_{v}}$$

where T_{h} = boiling point of the liquid (pure solvent)

- $I_v =$ latent heat of vaporisation per g of the solvent
- ΔH_v = latent heat of vaporisation per mole of the solvent
- M_1 = molecular mass of the solvent

R = gas const. 8.314 JK⁻¹ mol⁻¹ if I_v or Δ H_v is in joules or 1.987 cal K⁻¹ mol⁻¹ if I_v or Δ H_v is in calories.

23.
$$K_{f} = \frac{RT_{f}^{2}}{1000I_{f}} = \frac{M_{1}RT_{f}^{2}}{1000\Delta H_{f}}$$

where T_f = freezing point of the liquid (pure solvent)

 I_f = latent heat of fusion per g of the solvent

- ΔH_{f} = latent heat of fusion per mole of the solvent
- **24.** The lowering of vapour pressure on adding a non volatile solute to a solvent is due to converting up partially the surface of the solution by solute particles which are non volatile.
- **25.** Osmotic pressure method is the best method for determination of molecular masses of polymers because for polymer solutions, observed value of any other colligative property is too low to be measured accurately.

ObservedvalueofColligativeproperty

26. Van't Hoff factor (i) = $\frac{1}{Calculated value of colligative property}$

$$= \frac{\text{Calculatedmol.mass}}{\text{Observedmol.mass}} = \frac{M_{\text{cal.}}}{M_{\text{obs.}}}$$
$$\left(::\text{Molmass} \propto \frac{1}{\text{Colligative property}}\right)$$

27. For solutions undergoing dissociation / association

$$\Delta T_{b} = iK_{b} m, \Delta T_{f} = iK_{f}m, \pi = i\frac{n}{V}RT \qquad \left\{ \therefore C = \frac{n}{V} \right\}$$

- 28. For an electrolyte, $A_x B_y$ undergoing dissociation with degree of dissociation α . $A_x B_y \xrightarrow{} xA^{y+} + yB^{x-}$ $i = 1 - \alpha + n\alpha (n = x + y)$ $i = 1 + (n-1)\alpha \text{ or } \alpha = \frac{i-1}{n-1}$
- 29. For a solute A undergoing association

$$nA \xrightarrow{} A_n$$

i = 1 - \alpha + $\frac{\alpha}{n}$ or $\alpha = \frac{1-i}{1-\frac{1}{n}}$

- **30.** Van't Hoff factor (i) > 1 for solutes undergoing dissociation and it is < 1 for solutes undergoing association.
- **31.** Ethylene glycol is usually added to water in the radiator to lower its freezing point. It is called anti-freeze.
- **32.** Common salt (NaCl) or anhydrous CaCl₂ are used to clear snow on the roads. This is because they decrease the freezing point of water to such an extent it cannot freze to form ice.
- 33. According to Henry's law ⇒ mass of gas dissolved ∞ pressure of gas above the solution (i.e. m ∞ p or m = k_Hp where k_H is called Henry's constant) or for a mixture of gases. Solubility in terms of mole fraction ∞ partial pressure (i.e., x_A = k_Hp_A where k_H is in atm⁻¹ or bar⁻¹ or p_A = k_Hx_A where k_H is in atm or bar).
- **34.** Raoult's law is a special case of Henry's law (Idea).
- **35. Konowaloff's rule.** At any fixed temperature, the vapour phase is always richer in the more volatile component as compared to the solution phase. In other words, mole fraction of the more volatile component is always greater in the vapour phase than in the solution phase.

SURFACE CHEMISTRY

Classification Based on Interaction of Phases :-

Lyophilic and Lyophobic sols

Colloidal solutions in which the dispersed phase has considerable affinity for the dispersion medium, are called lyophilic sols. (solvent -liking).

For example - Dispersion of gelatin, Starch, gum and proteins in water. Colloidal solutions in which the dispersed phase has no affinity or attraction for the medium or for the solvent are called lyophobic collidal (Solvent hating) Solutions.

Property	Lyophilic Sol. [Liq. Loving	Lyophobic sol [Solvent hating	
	Solution] (Emulsoid)	colloid] (Suspensoid)	
1. Preparation	Can be easily prepared by	Can not be prepared	
	Shaking or warming the	Easily special methods	
	substance with solvent	are required	
2. Stability	are more stable	are less stable	
3. Reversibility	are reversible	are irreversible	
4. Viscosity	viscosity is much higher	viscosity is nearly same	
	than that of solvent	as that of the solvent	
5. Surface	Surface tension is	Surface tension is almost	
tension	usually low	same as that of solvent	
6. Hydration or	These are highly solvated	These are less solvated as	
Solvation	as the particles have great	the particles have less	
	affinity for solvent	affinity for the solvent	
7. Charge	The particles have little	The particles carry a	
	Charge or no charge at all	characteristic charge	
		either positive or negative	
8. Visibility	Particles can not be seen	Particles can be seen	
	under microscope	Under microscope	
9. Coagulation	Precipitated by high	precipitated by low	
or	concentration of	concentration of	
Precipitation	electrolytes	electrolytes	
10. Tyndall	Less scattering	More scattering	
Effect			
11. Migration	may or may not	migrate towards anode or	
in electric	migrate as they may	cathode as these particles	
field	or may not carry charge.	carry charge.	
12. General example	Mostly of organic nature	Mostly of Inorganic nature	
	Ex. Gelatin, Starch,	Ex. Transiton metal	
	Gum, Albumin &	Salt in water.	
	Cellulose solution	Gold, As etc.	

Comparison of Lyophobic and Lyophilic sols

Peptization :

SURFACE CHEMISTRY

The dispersion of a freshly precipitated material into colloidal solution by the action of an electrolyte in solution is termed as peptization. The electrolyte used is called **Peptizing agent.**

Hardy Schulze Rule :

This rule state that the precipitating effect of an ion on dispersed phase of oposite charge increasing with the valency of the ion.

The higher the valency of the flocculating ion, the greater is its precipitating power of As_2S_3 sol (negative), the precipitating power of AI^{3+} , Ba^{2+} and Na^+ ion is in the order $AI^{3+} > Ba^{2+} > Na^+$.

Similarly for precipitating $Fe(OH)_3$ sol (positive), the precipitating power of $[Fe(CN)_6]^{3-}$, SO_4^{2-} and Cl^- ions is in the order.

 $[Fe(CN)_{6}]^{3-} > SO_{4}^{2-} > Cl^{-}$

The minimum concentration of an electrolyte in milli moles required to cause precipitation of 1 litre sol in 2 hours is called FLOCCULATION VALUE. The smaller the flocculating value, the higher will be the coagulating power of the ion.

Flocculation value $\alpha \frac{1}{\text{Flocculation Power}}$

Gold Number :

The number of milligrams of a hydrophilic colloid that will just prevent the precipitation of 10 ml of standard gold sol on addition of 1 ml of 100% NaCl solution is know as Gold Number of that protector (Lyophillic colloid).

The precipitation of the gold solution is indicated by a colour change from red to blue when the particle size just increases.

The smaller the gold number of a protective Lyophilic colloid, Greater is its protection power.

Protection capacity α $\frac{1}{ProtectionNumber}$ (GoldNumber) G.N. = $\frac{Wt.oflyophilicsol.inmg}{Vol.ofgoldsolutioninmL} \times 10$

SURFACE CHEMISTRY

Ν	ote	:
	olu	•

Gelatin is best protecting colloid because it has least gold number.

Types of colloids according to their size					
Multi Molecular	Macro Molecular	Associated colloids			
Formation by Aggregation	Macromolecules having size	These are the substances of			
a large number of	in the colloidal range	which behave as normal			
atoms or smaller	These are polymers with	electrolytes at low			
molecules of substance.	high molecular mass.	concentration but get			
		associated at higher			
		concentration and behave			
		as colloidal.			
Ex. – Gold Sol	Ex. – Starch,	These Associated			
(Au), Sulphur sol. (S ₈)	Cellulose, Protein etc.	particlesare Also called			
		micelles. Ex. Sodium			
		stearate.			

Comparison of physisorption and chemisorption				
Physical adsorption	Chemical Adsorption			
	(Activated ad.)			
1. It is caused by intermolecular	It is caused by chemical bond			
Vander waal's forces.	Formation.			
2. It is not specific.	It is highly specific.			
3. It is reversible.	It is irreversible.			
4. Heat of adsorption is low. 20 to 40 kJ/mol	Heat of adsorption is high 80 to 240 kJ/mol			
5. No appreciable activation	High activation energy is			
energy is involved.	involved.			
6. It forms multimolecular layers	It forms unimolecular layer.			
on adsorbent surface				
under high pressure				

General Characteristics of Catalysts :

- (i) A catalyst remains unchanged in mass and chemical composition but can change their physical state.
- (ii) Only a very small amount of catalyst is sufficient to catalyse a reaction.
- (iii) A catalyst does not initiate a reaction.
- (iv) Solid catalyst is more efficient when used in finaly divided state.
- (v) Generally catalyst does not change the nature of products.
- (vi) A catalyst does not change the equilibrium state of a reversible reaction but helps to achieve the equilibrium state or position of equilibrium in lesser time.
- (vii) The catalyst is generally specific in nature.
- (viii) Change rate constant of reaction.
- (ix) Does not change free energy of reaction.
- (x) Participate in mechanism of reaction.