LIMITS, CONTINUITY AND DIFFERENTIABILITY

1. Definition :

Let $f(x)$ be defined on an open interval about ' a ' except possibly at ' a ' itself. If $f(x)$ gets arbitrarily close to L (a finite number) for all x sufficiently close to ' a ' we say that $f(x)$ approaches the limit L as x approaches ' a ' and we write $\operatorname{Lim}_{x \rightarrow a} f(x)=L$ and say "the limit of $f(x)$, as x approaches a, equals L".
This implies if we can make the value of $f(x)$ arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.
2. Left hand limit \& right hand limit of a function:

Left hand limit LHL $=\operatorname{Lim}_{x \rightarrow a^{-}} f(x)=\operatorname{Lim}_{h \rightarrow 0} f(a-h), h>0$.
Right hand limit $R H L=\operatorname{Lim}_{x \rightarrow a^{+}} f(x)=\underset{h \rightarrow 0}{\operatorname{Lim}} f(a+h), h>0$.

Limit of a function $f(x)$ is said to exist as, $x \rightarrow$ a when $\operatorname{Lim}_{x \rightarrow a^{-}} f(x)=\operatorname{Lim}_{x \rightarrow a^{+}} f(x)$.

Important note :

In $\operatorname{Lim}_{x \rightarrow a} f(x), x \rightarrow$ necessarily implies $x \neq \mathbf{a}$. That is while evaluating limit at $x=a$, we are not concerned with the value of the function at $x=a$. In fact the function may or may not be defined at $\mathrm{x}=\mathrm{a}$.
Also it is necessary to note that if $f(x)$ is defined only on one side of ' $x=a$ ', one sided limits are good enough to establish the existence of limits, \& if $f(x)$ is defined on either side of ' a ' both sided limits are to be considered.

3. Fundamental theorems of limits:

Let $\operatorname{Lim}_{x \rightarrow a} f(x)=I \& \operatorname{Lim}_{x \rightarrow a} g(x)=m$. If $/ \& m$ exists finitely then:
(a) Sum rule: $\operatorname{Lim}_{x \rightarrow \mathrm{a}}[f(x)+g(x)]=1+m$
(b) Difference rule: $\operatorname{Lim}_{x \rightarrow a}[f(x)-g(x)]=1-m$
(c) Product rule : $\operatorname{Lim}_{x \rightarrow a} f(x) \cdot g(x)=\ell \cdot m$
(d) Quotient rule: $\operatorname{Lim}_{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\ell}{m}$, provided $m \neq 0$
(e) Constant multiple rule : $\underset{x \rightarrow a}{\operatorname{Lim}} k f(x)=k \underset{x \rightarrow a}{\operatorname{Limf}}(x)$; where k is constant.
(f) Power rule: If m and n are integers then $\operatorname{Lim}_{\mathrm{x} \rightarrow \mathrm{a}}[\mathrm{f}(\mathrm{x})]^{\mathrm{m} / n}=\ell^{\mathrm{m} / n}$ provided $\ell^{m / n}$ is a real number.
(g) $\quad \operatorname{Lim}_{x \rightarrow a} f[g(x)]=f\left(\operatorname{Lim}_{x \rightarrow a} g(x)\right)=f(m) ;$ provided $f(x)$ is continuous at $x=m$.

For example: $\underset{x \rightarrow a}{\operatorname{Lim}} \ell \operatorname{n}(g(x))=\ell n\left[\operatorname{Lim}_{x \rightarrow a} g(x)\right]$
$=\ln (m)$; provided $\ln x$ is continuous at $x=m, m=\lim _{x \rightarrow a} g(x)$.
4. Indeterminate forms:
$\frac{0}{0}, \frac{\infty}{\infty}, \infty-\infty, 0 \times \infty, 1^{\infty}, 0^{0}, \infty^{0}$.
Initially we will deal with first five forms only and the other two forms will come up after we have gone through differentiation.

Note :

(i) We cannot plot ∞ on the paper. Infinity (∞) is a symbol \& not a number It does not obey the laws of elementary algebra,
5. General methods to be used to evaluate limits :

(a) Factorization :

Important factors :

(i) $x^{n}-a^{n}=(x-a)\left(x^{n-1}+a x^{n-2}+\right.$ \qquad $\left.+a^{n-1}\right), n \in N$
(ii) $x^{n}+a^{n}=(x+a)\left(x^{n-1}-a x^{n-2}+\right.$ \qquad $\left.+a^{n-1}\right), n$ is an odd natural number.

Note : $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$

(b) Rationalization or double rationalization:

In this method we rationalise the terms containing the irrational and simplify.
(c) Limit when $\mathrm{x} \rightarrow \infty$:
(i) Divide by greatest power of x in numerator and denominator.
(ii) Subtitute $x=1 / y$ and apply $y \rightarrow 0$ as $x \rightarrow \infty$

(d) Squeeze play theorem (Sandwich theorem):

If $f(x) \leq g(x) \leq x(x) ; \forall x$ in its domain , a belongs to this domain $\& \operatorname{Lim}_{x \rightarrow a} f(x)=\ell=\operatorname{Lim}_{x \rightarrow a} h(x)$ then, $\operatorname{Lim}_{x \rightarrow a} g(x)=\ell$

for example: $\operatorname{Lim}_{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0$, as illustrated by the graph given.
6. Limit of trigonometric functions :
$\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x}{x}=1=\operatorname{Lim}_{x \rightarrow 0} \frac{\tan x}{x}=\operatorname{Lim}_{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=\operatorname{Lim}_{x \rightarrow 0} \frac{\sin ^{-1} x}{x}$
[where x is measured in radians]

Note:

(a) If $\operatorname{Lim}_{x \rightarrow a} f(x)=0$, then $\operatorname{Lim}_{x \rightarrow a} \frac{\sin f(x)}{f(x)}=1$, e.g. $\operatorname{Lim}_{x \rightarrow 1} \frac{\sin (\ell n x)}{(\ln x)}=1$
(b) Using substitution
$\operatorname{Lim}_{x \rightarrow a} f(x)=\operatorname{Lim}_{h \rightarrow 0} f(a-h)$ or $\operatorname{Lim}_{h \rightarrow 0} f(a+h)$ i.e.
by substituting x by $a-h$ or $a+h$
7. Limit of exponential functions :
(a) $\quad \operatorname{Lim}_{x \rightarrow 0} \frac{a^{x}-1}{x}=\ell n a(a>0)$ In particular $\operatorname{Lim}_{x \rightarrow 0} \frac{e^{x}-1}{x}=1$.

In general if $\operatorname{Lim}_{x \rightarrow a} f(x)=0$, then $\operatorname{Lim}_{x \rightarrow a} \frac{a^{f(x)}-1}{f(x)}=\ell n a, a>0$
(b) $\quad \operatorname{Lim}_{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$
(c) $\quad \operatorname{Lim}_{x \rightarrow 0}(1+x)^{1 / x}=e=\operatorname{Lim}_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
(Note : The base and exponent depends on the same variable)

LIMITS, CONTINUITY AND DIFFERENTIABILITY

In general, if $\operatorname{Lim}_{x \rightarrow a} f(x)=0$, then $\underset{x \rightarrow a}{\operatorname{Lim}(1+f(x))^{1 / f(x)}}=e$
(d) If $\operatorname{Lim}_{x \rightarrow a} f(x)=1$ and $\operatorname{Lim}_{x \rightarrow a} \phi(x)=\infty$, then ; $\operatorname{Lim}_{x \rightarrow a}[f(x)]^{\phi(x)}=e^{k} \quad$ where $k=\operatorname{Lim}_{x \rightarrow a} \phi(x)[f(x)-1]$
(e) If $\operatorname{Lim}_{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})=\mathrm{A}>0 \& \operatorname{Lim}_{x \rightarrow a} \phi(x)=B$ (a finite quantity) then; $\operatorname{Lim}_{\mathrm{x} \rightarrow \mathrm{a}}[\mathrm{f}(\mathrm{x})]^{\phi(\mathrm{x})}=\mathrm{e}^{\mathrm{B} \ln \mathrm{A}}=\mathrm{A}^{\mathrm{B}}$

8. Limit using Series Expansion :

Expansion of certain functions like binomial expansion, exponential \& logarithmic expansion, expansion of $\sin x, \cos x, \tan x$ helps in solving problems in a simpler way
(a) $a^{x}=1+\frac{x \ln a}{1!}+\frac{x^{2} \ell n^{2} a}{2!}+\frac{x^{3} \ell^{3} a}{3!}+\ldots \ldots . . . a>0$
(b) $\quad e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+$
(c) $\quad \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots . .$. for $-1<x \leq 1$
(d) $\quad \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+$
(e) $\quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \ldots .$.
(f) $\tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+$
(g) $\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+$
(h) $\quad \sin ^{-1} x=x+\frac{1^{2}}{3!} x^{3}+\frac{1^{2} \cdot 3^{2}}{5!} x^{5}+\frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{7!} x^{7}+\ldots \ldots$.
(i) $\sec ^{-1} x=1+\frac{x^{2}}{2!}+\frac{5 x^{4}}{4!}+\frac{61 x^{6}}{6!}+$
(j) $\quad(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+$ \qquad
(k) $\quad(1+x)^{1 / x}=e\left[1-\frac{x}{2}+\frac{11}{24} x^{2} \ldots \ldots.\right]$
9. Limit using 'L' Hospital rule :

If $\operatorname{Lim}_{x \rightarrow a} \frac{f(x)}{g(x)}$ is of the form, $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then $\operatorname{Lim}_{x \rightarrow a} \frac{f(x)}{g(x)}=\operatorname{Lim}_{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
provided $\operatorname{Lim}_{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists.

CONTINUITY

1. Continuous functions:

A function $f(x)$ is said to be continuous at $x=a$, if $\operatorname{Lim}_{x \rightarrow a} f(x)=f(a)$ Symbolically f is continuous at $x=a$ if $\operatorname{Lim}_{h \rightarrow 0} f(a-h)=\operatorname{Lim}_{h \rightarrow 0} f(a+h)=f(a)$

2. Continuity of the function in an interval :

(a) A function f is said to be continuous in (a,b) if f is continuous at each \& every point belonging to (a, b).
(b) A function is said to be continuous in a closed interval $[\mathrm{a}, \mathrm{b}]$ if:

- f is continuous in the open interval (a, b)
- f is right continuous at 'a' i.e. $\operatorname{Lim}_{x \rightarrow a^{+}} f(x)=f(a)=a$ finite quantity
- f is left continuous at ' b ' i.e. $\operatorname{Lim}_{x \rightarrow b^{-}} f(x)=f(b)=$ a finite quantity

Note :
(i) All polynomials, trigonometric functions, exponential \& logarithmic functions are continuous in their domains.
(ii) If $f(x) \& g(x)$ are two functions that are continuous at $x=c$ then the function defined by :
$F_{1}(x)=f(x) \pm g(x) ; F_{2}(x)=K f(x), K$ any is real number
$\mathrm{F}_{3}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})$; are also continuous at $\mathrm{x}=\mathrm{c}$.
Further, if $g(c)$ is not zero, then $F_{4}(x)=\frac{f(x)}{g(x)}$ is also continuous at $x=c$.
(iii) If f and g are continuous then fog and gof are also continuous.
(iv) If f and g are discontinuous at $x=c$, then $f+g$, $f . g$ may or may not be continuous.
3. Reasons of discontinuity:
(a) Limit does not exist
i.e. $\operatorname{Lim}_{x \rightarrow a^{-}} f(x) \neq \operatorname{Lim}_{x \rightarrow a^{+}} f(x)$
(b) $f(x)$ is not defined at $x=a$
(c) $\operatorname{Lim}_{x \rightarrow a} f(x) \neq f(a)$

Geometrically, the graph of the function will exhibit a break at $x=a$, if the function is discontinuous at $\mathrm{x}=\mathrm{a}$. The graph as shown is discontinuous at $\mathrm{x}=1,2$ and 3 .

4. Types of discontinuities:

Type-1 : (Removable type of discontinuities) : In case $\operatorname{Lim}_{x \rightarrow a} f(x)$ exists but is not equal to $f(a)$ then the function is said to have a removable discontinuity or discontinuity of the first kind. In this case we can redefine the function such that $\operatorname{Lim}_{x \rightarrow a} f(x)=f(a)$ \& make it continuous at $\mathrm{x}=\mathrm{a}$. Removable type of discontinuity can be further classified as:
(a) Missing point discontinuity :

Where $\operatorname{Lim}_{x \rightarrow a} f(x)$ exists but $f(a)$ is not defined.
(b) Isolated point discontinuity :

Where $\operatorname{Lim}_{x \rightarrow a} f(x)$ exists \& $f(a)$ also exists but $\operatorname{Lim}_{x \rightarrow a} f(x) \neq f(a)$.

Type-2 : (Non-Removable type of discontinuities) :-

In case $\operatorname{Lim}_{x \rightarrow a} f(x)$ does not exist then it is not possible to make the function continuous by redefining it. Such a discontinuity is known as non-removable discontinuity or discontinuity of the 2 nd kind. Non-removable type of discontinuity can be further classified as :
(i) Finite type discontinuity : In such type of discontinuity left hand limit and right hand limit at a point exists but are not equal.
(ii) Infinite type discontinuity : In such type of discontinuity atleast one of the limit viz. LHL and RHL is tending to infinity.

(c) Oscillatory type discontinuity :

$\mathrm{f}(\mathrm{x})$ has non removable oscillatory type discontinuity at $\mathrm{x}=0$
Note : In case of non-removable (finite type) discontinuity the non-negative difference between the value of the RHL at $x=a \&$ LHL at $x=a$ is called THE JUMP OF DISCONTINUITY. A function having a finite number of jumps in a given interval I is called a piece wise continuous or sectionally continuous function in this interval.

5. The intermediate value theorem

Suppose $f(x)$ is continuous on an interval I, and a and b are any two points of I. Then if y_{0} is a number between $f(a)$ and $f(b)$ then exists a number c between a and b such that $f(c)=y_{0}$

The function f , being continuous on $[\mathrm{a}, \mathrm{b}]$ takes on every value between $f(a)$ and $f(b)$

Note: A function f which is continuous in [a,b] possesses the following properties:
(i) If $f(a) \& f(b)$ have opposite signs, then there exist atleast one root of the equation $f(x)=0$ in the open interval (a, b).
(ii) If K is any real number between $f(a) \& f(b)$, then there exist atleast one root of the equation $f(x)=K$ in the open interval (a, b).

DIFFERENTIABILITY

1. Introduction

Differentiation is a method which can be used for observing the way in which functions behave. In particular, it measures how rapidly a function is changing at any given point.

2. Right hand \& left hand derivatives:

(a) Right hand derivative:

The right hand derivative of $f(x)$ at $x=$ a denoted by $f^{\prime}\left(a^{+}\right)$is defined as:
$f^{\prime}\left(a^{+}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ provided the limit exists \& is finite $(h>0)$.
(d) Left hand derivative:

The left hand derivative of $f(x)$ at $x=$ a denoted by $f^{\prime}\left(a^{-}\right)$is defined as: $f^{\prime}\left(a^{-}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}$, provided the limit exists \& is finite ($h>0$).
(c) Derviability of function at a point :

If $f^{\prime}\left(a^{+}\right)=f^{\prime}\left(a^{-}\right)=$finite quantity, then $f(x)$ is said to be derivable or differentiable at $x=a$. In such case $f^{\prime}\left(a^{+}\right)=f^{\prime}\left(a^{-}\right)=f^{\prime}(a)$ \& it is called derivative or differentical coefficient of $f(x)$ at $x=$ a.

Note :

(i) All polynomials, trigonometric functions, inverse trigonometric functions, logarithmic and exponential functions are continuous and differentaiable in their domains, except at end points.
(ii) If $f(x) \& g(x)$ are derivable at $x=a$ then the functions $f(x)+g(x), f(x)-g(x)$ will also be derivable at $x=a$ \& if $g(a) \neq 0$ then the function $f(x) / g(x)$ will also be derivable at $x=a$

3. Importatn note:

(a) Let $f^{\prime}\left(a^{+}\right)=p \& f^{\prime}\left(a^{-}\right)=q$ where p \& q are finite then:
(i) $\mathrm{p}=\mathrm{q} \Rightarrow \mathrm{f}$ is derivable at $\mathrm{x}=\mathrm{a} \Rightarrow \mathrm{f}$ is continuous at $\mathrm{x}=\mathrm{a}$
(ii) $\mathrm{p} \neq \mathrm{q} \Rightarrow \mathrm{f}$ is not derivable at $\mathrm{x}=\mathrm{a}$,

It is very important to note that ' f ' may be still continuous at $x=a$
In short, for a function ' f ' :
Differentiable $\quad \Rightarrow \quad$ Continuious:
Not Differentiable \Rightarrow Not Continuious
But Not Continuous $\Rightarrow \quad$ Not Differentiable
Continuous $\quad \Rightarrow \quad$ May or may not be Differentiable
(b) Geometrical interpretation of differentiability :
(i) If the function $y=f(x)$ is differentiable at $x=a$, then a unique tangent can be drawn to the curve $y=f(x)$ at the point $P(a, f(a)) \& f^{\prime}(a)$ represent the slope of the tangent at point P.
(ii) If LHD and RHD are finite but unequal then it geometrically implies a sharp corner at x $=$ a e.g. $f(x)=|x|$ is continuous but not differentiable at $x=0$ A sharp corner is seen at $x=$ 0 in the graph of $f(x)=|x|$
(iii) If a function has vertical tangent at $x=a$ then also it is nonderivable at $x=a$.
(c) Vertical tangent :

If for $y=f(x)$
$\mathrm{f}\left(\mathrm{a}^{+}\right) \rightarrow \infty$ and $\mathrm{f}^{\prime}\left(\mathrm{a}^{-}\right) \rightarrow \infty$ or $\mathrm{f}^{\prime}\left(\mathrm{a}^{+}\right) \rightarrow-\infty$ and $\mathrm{f}^{\prime}\left(\mathrm{a}^{-}\right) \rightarrow-\infty$
then at $x=a, y=f(x)$ has vertical tangent but $f(x)$ is not differentiable at $x=a$

4. Differentiability over an interval

(a) $f(x)$ is said to be differentiable over an open interval (a, b) if it is differentiable at each \& every point of the open interval (a, b).
(b) $f(x)$ is said to be differentiable over the closed interval [a, b] if:
(i) $f(x)$ is differentiable in (a, b) \&
(ii) for the points a and $b, f^{\prime}\left(a^{+}\right) \& f^{\prime}\left(b^{-}\right)$exist.

Note :

(i) If $f(x)$ is differentiable at $x=a \& g(x)$ is not differentiable at $x=a$, then the product function $F(x)=f(x) \cdot g(x)$ may or may not be differentiable at $x=a$.
(ii) If $f(x) \& g(x)$ both are not differentiable at $x=a$ then the product function; $F(x)=f(x) \cdot g(x)$ may or may not be differentiable at $x=a$.
(iii) If $f(x) \& g(x)$ both are non-differentiable at $x=a$ then the sum function $F(x)=f(x)+g(x)$ may be a differentiable function.

LIMITS, CONTINUITY AND DIFFERENTIABILITY

(iv) If $f(x)$ is differentiable at $x=a \nRightarrow f^{\prime}(x)$ is continuous at $x=a$.

METHODS OF DIFFERENTIATION

1. Derivative of $F(x)$ from the first Principle :

Obtaining the derivative using the definition $\operatorname{Lim}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=\operatorname{Lim}_{\delta x \rightarrow 0} \frac{f(x+\delta x)-f(x)}{\delta x}=f^{\prime}(x)=\frac{d y}{d x}$ is called calculating derivative using first principle or ab initio or delta method.

2. Fundamental Theorems:

If f and g are derivable functions of x, then,
(a) $\frac{d}{d x}(f \pm g)=\frac{d f}{d x} \pm \frac{d g}{d x}$
(b) $\frac{d}{d x}(c f)=c \frac{d f}{d x}$, where c is any constant
(c) $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{fg})=\mathrm{f} \frac{\mathrm{dg}}{\mathrm{dx}}+\mathrm{g} \frac{\mathrm{df}}{\mathrm{dx}}$ known as "PRODUCT RULE"
(d) $\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{g\left(\frac{d f}{d x}\right)-f\left(\frac{d g}{d x}\right)}{g^{2}}$
where $\mathrm{g} \neq 0$ known as "QUOTIENT RULE"
(e) If $y=f(u) \& u=g(x)$ then $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$ known as "CHAIN RULE"

Note: In general if $y=f(u)$ then $\frac{d y}{d x}=f^{\prime}(u) \cdot \frac{d u}{d x}$.

3. Derivative of Standard Functions :

	$\mathbf{f (x)}$	$\mathbf{f}^{\prime}(\mathbf{x})$
(i)	x^{n}	$n x^{n-1}$
(ii)	e^{x}	e^{x}
(iii)	a^{x}	$\mathrm{a}^{\mathrm{x}} / \mathrm{n} a, a>0$
(iv)	$\ln x$	$1 / \mathrm{x}, \mathrm{x}>0$
(v)	$\log _{a} \mathrm{x}$	$(1 / \mathrm{x}) \log _{\mathrm{a}} \mathrm{e}, \mathrm{a}>0, \mathrm{a}^{1} 1, \mathrm{x}>0$
(vi)	$\sin x$	$\cos x$
(vii)	$\cos x$	$-\sin x$
(viii)	$\tan x$	$\sec ^{2} \mathrm{x}$
(ix)	$\sec x$	$\sec x \tan x$

(x)	cosecx	$-\operatorname{cosec}^{2} \cdot \cot x$
(xi)	cot x	$-\operatorname{cosec}^{2} x$
(xii)	constant	0
(xiii)	$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}},-1<x<1$
(xiv)	$\cos ^{-1} x$	$\frac{-1}{\sqrt{1-x^{2}}},-1<x<1$
(xv)	$\tan ^{-1} x$	$\frac{1}{1+x^{2}}, x \in R$
(xvi)	$\sec ^{-1} x$	$\frac{1}{\|x\| \sqrt{x^{2}-1}},\|x\|>1$
(xvii)	$\operatorname{cosec}^{-1} x$	$\frac{-1}{1+x^{2}}, x \in R$

4. Logarithmic Differentiation :

To find the derivative of a function which is :
(a) The product or quotient of a number of functions or
(b) of the form $[f(x)]^{g(x)}$ where $f \& g$ are both derivable.

Then it is convenient to take the logarithm of the function first $\&$ then differentiate.

5. Differentiation of Implicit Functions :

(a) Let function be $\phi(x, y)=0$ then to find $d y / d x$ in the case of implicit functions, we differentiate each term w.r.t. $x \&$ then collect terms in $d y / d x$ together on one side.
or $\frac{d y}{d x}=\frac{-\partial f / \partial x}{\partial f / \partial y}$ where $\frac{\partial f}{\partial x} \& \frac{\partial f}{\partial y}$ are partial differential coefficient of $f(x, y)$ w.r.to $x \&$ y respectively.
(b) in answers of $d y / d x$ in the case of implicit functions, generally, both $x \& y$ are present.

6. Parametric Differentition :

If $y=f(\theta) \& x=g(\theta)$ where θ is a parameter, then $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$.
7. Derivative of a function w.r.t. Another Function :

Let $y=f(x) ; z=g(x)$ then $\frac{d y}{d z}=\frac{d y / d x}{d z / d x}=\frac{f^{\prime}(x)}{g^{\prime}(x)}$

8. Derivative of a Function and its Inverse Function :

If inverse of $y=f(x)$
$x=f^{-1}(y)$ is denoted by $x=g(y)$ then $g(f(x))=x$ then $g^{\prime}(f(x)) f^{\prime}(x)=1$

9. Higher Order Derivatives :

Let a function $y=f(x)$ be defined on an interval (a, b). Its derivative if it exists on (a, b) is a certain function $\mathrm{f}^{\prime}(\mathrm{x})$ [or ($\mathrm{dy} / \mathrm{dx}$) or $\left.\mathrm{y}^{\prime}\right]$ \& it is called the first derivative of y w.r.t. x . If first derivative has a derivative on (a, b) then this derivative is called second derivative of y w.r.t. $x . \&$ is denoted by $f^{\prime \prime}(x)$ or $\left[d^{2} y / d x^{2}\right]$ or $y^{\prime \prime}$. Similarly, the $3^{\text {rd }}$ order derivative of y w.r.t x, if it exists, is defined by $\frac{d^{3} y}{d x^{3}}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)$ it is also denoted by $f^{\prime \prime \prime}(x)$ or $y^{\prime \prime \prime} \&$ so on.

10. Differentiation of Determinants :

If $F(x)=\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ I(x) & m(x) & n(x) \\ u(x) & v(x) & w(x)\end{array}\right|$, where $f, g, h . I, m, n, u, v, w$ are differentiable functions of x then
$F^{\prime}(x)=\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ I(x) & m(x) & n(x) \\ u(x) & v(x) & w(x)\end{array}\right|+\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ I^{\prime}(x) & m^{\prime}(x) & n^{\prime}(x) \\ u(x) & v(x) & w(x)\end{array}\right|+\left\lvert\, \begin{array}{ccc}f(x) & g(x) & h(x) \\ I(x) & m(x) & n(x) \\ u^{\prime}(x) & v^{\prime}(x) & w^{\prime}(x)\end{array}\right.$

11. L' Hospital's Rule :

(a) This rule is applicable for the indeterminate forms in limits of the type $\frac{0}{0}, \frac{\infty}{\infty}$. If the function $f(x)$ and $g(x)$ are differentiable in certain neighbourhood of the point ' a ', except, may be, at the point 'a' itself and $g^{\prime}(x) \neq 0$, and if
$\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ or $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=\infty$,
then $\quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
provided the limit $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists (L' Hospital's rule). The point 'a' may be either finite or infinite ($+\infty$ or $-\infty$).
(b) In limits indeterminate forms of the type $0 . \infty$ or $\infty-\infty$ are reduced to forms of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by algebraic transformations.
(c) In limits indeterminate forms of the type $1^{\infty}, \infty^{0}$ or 0^{∞} are reduced to forms of the type $0 . \infty$ by taking logarithms or by the transformation $[f(x)]^{f(x)}=e^{f(x) \cdot \operatorname{lnf}(x)}$.

