

Subject: Mathematics

- 1. For each $x\in\mathbb{R}$, let [x] be the greatest integer less than or equal to x. Then $\lim_{x\to 0^-}\frac{x([x]+|x|)\,\sin[x]}{|x|} \text{is equal to}:$
 - A. $\sin 1$
 - **B.** 0
 - **c.** $-\sin 1$
 - **D**. 1
- 2. $\lim_{x \to 0} \frac{\int_0^{x^2} (\sin \sqrt{t}) dt}{x^3}$ is equal to
 - **A.** $\frac{2}{3}$
 - **B.** 0
 - **C.** $\frac{1}{15}$
 - **D.** $\frac{3}{2}$
- 3. For each $t \in \mathbf{R}$, let [t] be the greatest integer less than or equal to t. Then,

$$\lim_{x o 1^+} rac{(1-|x|+\sin|1-x|)\sinigg(rac{\pi}{2}[1-x]igg)}{|1-x|[1-x]}$$

- **A.** equals 0
- **B.** equals 1
- **C.** equals -1
- **D.** does not exist

- 4. Let $f:(-1,1)\to\mathbb{R}$ be a function defined by $f(x)=\max\left\{-|x|,\ -\sqrt{1-x^2}\right\}$. If K be the set of all points at which f is not differentiable, then K has exactly
 - A. one element
 - B. two elements
 - C. three elements
 - D. five elements
- 5. Let [x] denote the greatest integer less than or equal to x. Then :

$$\lim_{x \to 0} \frac{\tan(\pi \sin^2 x) + (|x| - \sin(x[x]))^2}{x^2}$$

- **A.** equals π
- **B.** equals 0
- **C.** equals $\pi + 1$
- D. does not exist
- 6. If $\lim_{x \to 1} \frac{x^4 1}{x 1} = \lim_{x \to k} \frac{x^3 k^3}{x^2 k^2}$, then k is :
 - **A.** $\frac{4}{3}$
 - **B.** $\frac{8}{3}$
 - **c.** $\frac{3}{8}$
 - **D.** $\frac{3}{2}$

7. If
$$f(x) = \begin{cases} \dfrac{\sin(\alpha+2)x + \sin x}{x}, & x < 0 \\ b, & x = 0 \\ \dfrac{(x+3x^2)^{\frac{1}{3}} - x^{\frac{1}{3}}}{x^{\frac{4}{3}}}, & x > 0 \end{cases}$$
 is continuous at $x = 0$ then $a + 2b$

is equal to:

- **A.** -2
- **B.** ₁
- **C**. 0
- **D.** -1
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined as

$$f(x) = \left\{ egin{array}{lll} 5, & ext{if} & x \leq 1 \ a+bx, & ext{if} & 1 < x < 3 \ b+5x, & ext{if} & 3 \leq x < 5 \ 30, & ext{if} & x \geq 5 \end{array}
ight.$$

Then, which of the following is correct regarding the function f:

- **A.** continuous if a = -5 and b = 10
- **B.** continuous if a = 5 and b = 5
- **C.** continuous if a=0 and b=5
- **D.** Not continuous for any values of a and b
- 9. Let the functions $f:\mathbb{R} \to \mathbb{R}$ and $g:\mathbb{R} \to \mathbb{R}$ be defined as:

$$f(x) = \left\{egin{array}{ll} x+2, & x<0 \ x^2, & x\geq 0 \end{array}
ight. ext{ and } g(x) = \left\{egin{array}{ll} x^3, & x<1 \ 3x-2, & x\geq 1 \end{array}
ight.$$

Then, the number of points in $\mathbb R$ where (fog)(x) is non differentiable is equal to :

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** 0

10. If a function f(x) defined by

$$f\left(x
ight) = \left\{ egin{array}{ll} ae^{x} + be^{-x}, & -1 \leq x < 1 \ cx^{2}, & 1 \leq x \leq 3 \ ax^{2} + 2cx & 3 < x \leq 4 \end{array}
ight.$$

be continuous for some $a,b,c\in\mathbb{R}$ and $f'\left(0\right)+f'\left(2\right)=e,$ then the value of a is :

A.
$$\frac{1}{e^2 - 3e + 13}$$

B.
$$\frac{e}{e^2 - 3e - 13}$$

C.
$$\frac{e}{e^2 + 3e + 13}$$

D.
$$\frac{e}{e^2 - 3e + 13}$$

11.
$$\lim_{n o\infty}\left(1+rac{1+rac{1}{2}+\;\ldots\ldots\;+rac{1}{n}}{n^2}
ight)^n$$
 is equal to :

A.
$$\frac{1}{2}$$

$$\mathbf{B.} \quad \frac{1}{e}$$

$$\mathbf{D}$$
. 0

12. The value of the limit $\lim_{\theta \to 0} \frac{\tan\left(\pi\cos^2\theta\right)}{\sin\left(2\pi\sin^2\theta\right)}$ is equal to:

A.
$$-\frac{1}{2}$$

B.
$$-\frac{1}{4}$$

D.
$$\frac{1}{4}$$

- 13. The value of $\lim_{x\to 0^+}\frac{\cos^{-1}\left(x-[x]^2\right)\cdot\sin^{-1}\left(x-[x]^2\right)}{x-x^3}$, where [x] denotes the greatest integer $\leq x$ is:
 - **A.** 0
 - $\mathbf{B.} \quad \frac{\pi}{4}$
 - C. $\frac{\pi}{2}$
 - D. π
- 14. If the function $f(x)=\begin{cases} k_1(x-\pi)^2-1, & x\leq\pi\\ k_2\cos x, & x>\pi \end{cases}$ is twice differentiable, then the ordered pair (k_1,k_2) is equal to:
 - **A.** (1,1)
 - **B.** (1,0)
 - $\mathbf{C.} \quad \left(\frac{1}{2}, -1\right)$
 - $\mathbf{D.} \quad \left(\frac{1}{2}, 1\right)$
- 15. If $\lim_{x \to \infty} \left(\sqrt{x^2 x + 1} ax \right) = b$, then the ordered pair (a,b) is
 - $\mathbf{A.} \quad \left(1, \frac{1}{2}\right)$
 - $\mathbf{B.} \quad \left(-1, -\frac{1}{2}\right)$
 - $\mathbf{C.} \quad \left(-1, \frac{1}{2}\right)$
 - $\mathbf{D.} \quad \left(1, -\frac{1}{2}\right)$

16. Let a function $f: \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \left\{ egin{array}{ll} \sin x - e^x & & ext{if } x \leq 0 \ a + [-x] & & ext{if } 0 < x < 1 \ 2x - b & & ext{if } x \geq 1 \end{array}
ight.$$

where [x] is the greatest integer less than or equal to x. If f is continuous on \mathbb{R} , then (a+b) is equal to

- **A.** 5
- **B.** 3
- **C**. 4
- **D.** 2
- 17. The value of $\lim_{x \to 0} \left(\frac{x}{\sqrt[8]{1 \sin x} \sqrt[8]{1 + \sin x}} \right)$ is equal to
 - **A.** ₄
 - **B.** __
 - **C.** _1
 - \mathbf{D} . 0
- 18. If α,β are the distinct roots of $x^2+bx+c=0$, then $\lim_{x\to\beta}\frac{e^{2(x^2+bx+c)}-1-2(x^2+bx+c)}{\left(x-\beta\right)^2} \text{is equal to}$

A.
$$b^2-4c$$

$$\mathbf{B.} \quad b^2 + 4c$$

C.
$$2(b^2 + 4c)$$

D.
$$2(b^2 - 4c)$$

19. If $f:\mathbb{R} o \mathbb{R}$ is given by f(x)=x+1, then the value of

$$\lim_{n o\infty}rac{1}{n}\Bigg[f(0)+f\left(rac{5}{n}
ight)+f\left(rac{10}{n}
ight)+\ldots+f\left(rac{5(n-1)}{n}
ight)\Bigg]$$
 , is:

- **A.** $\frac{7}{2}$
- **B.** $\frac{3}{2}$
- **c.** $\frac{5}{2}$
- **D.** $\frac{1}{2}$
- 20. Let $f:\mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \left\{ egin{aligned} rac{x^3}{(1-\cos2x)^2} \cdot \log_eigg(rac{1+2xe^{-2x}}{(1-xe^{-x})^2}igg) &, & x
eq 0 \ & lpha &, & x = 0 \end{aligned}
ight.$$

If f is continuous at x = 0, then α is equal to:

- **A.** 0
- В.
- **C.** 2
- **D**. 3

21. Let $f:\mathbb{R} \to \mathbb{R}$ be defined as

$$f(x)=\left\{egin{array}{ll} rac{\lambda|x^2-5x+6|}{\mu(5x-x^2-6)}, & x<2 \ & rac{ an(x-2)}{x-[x]}, & x>2 \ & \mu, & x=2 \end{array}
ight.$$

where [x] is the greatest integer less than or equal to x. If f is continuous at x=2, then $\lambda+\mu$ is equal to

- **A.** 1
- **B.** e(e-2)
- **C.** e(-e+1)
- **D.** 2e-1
- 22. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = max\{x, x^2\}$. Let S denote the set of all points in \mathbb{R} , where f is not differentiable. Then
 - **A.** $\{0,1\}$
 - **B.** ϕ (an empty set)
 - **c.** $\{1\}$
 - **D.** $\{0\}$
- 23. Let $S=\left\{t\in\mathbb{R}:f(x)=|x-\pi|\cdot(e^{|x|}-1)\sin|x| \text{ is not differentiable at t}\right\}.$ Then the set S is equal to
 - **A.** $\{0, \pi\}$
 - **B.** ϕ (an empty set)
 - **C.** $\{0\}$
 - **D.** $\{\pi\}$

24.
$$\lim_{x\to 0} \frac{\sin^2(\pi\cos^4x)}{x^4}$$
 is equal to:

A.
$$4\pi$$

B.
$$\pi^2$$

C.
$$4\pi^2$$

D.
$$2\pi^2$$

25. Let $f: R \to R$ be a function defined as

$$f(x)=\left\{egin{array}{ll} \dfrac{\sin(a+1)x+\sin2x}{2x}, & ext{if } x<0 \ b, & ext{if } x=0 \ \dfrac{\sqrt{x+bx^3}-\sqrt{x}}{bx^{5/2}}, & ext{if } x>0 \end{array}
ight.$$

If f is continuous at x = 0, then the value of a + b is equal

A.
$$-2$$

B.
$$-\frac{5}{2}$$

C.
$$-\frac{3}{2}$$

D.
$$-3$$

26. If $f(x) = \begin{cases} \frac{1}{|x|}; & |x| \geq 1 \\ ax^2 + b; & |x| < 1 \end{cases}$ is a differentiable at every point of the domain,

then the values of a and b are respectively:

A.
$$\frac{5}{2}$$
, $-\frac{3}{2}$

B.
$$-\frac{1}{2}, \frac{3}{2}$$

C.
$$\frac{1}{2}, \frac{1}{2}$$

D.
$$\frac{1}{2}, -\frac{3}{2}$$

27.
$$\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos 3x)}{x\tan 4x}$$
 is equal to :

- **A.** $\frac{1}{4}$
- **B.** $\frac{1}{2}$
- **c**. ₁
- **D.** 2

28. If
$$f:\mathbb{R}\to\mathbb{R}$$
 is a function defined by
$$f(x)=[x]\cos\Bigl(\frac{2x-1}{2}\Bigr)\pi, \text{ where } [x] \text{ denotes the greatest integer function,}$$
 then f is

- **A.** continuous for every real x.
- **B.** discontinuous only at x = 0.
- **C.** discontinuous only at non-zero integral values of x.
- **D.** continuous only at x = 0.

29. If
$$\lim_{x\to 0} \frac{ax-(e^{4x}-1)}{ax(e^{4x}-1)}$$
 exists and is equal to b , then the value of $a-2b$ is

Consider the function
$$f(x)=\begin{cases} \dfrac{P(x)}{\sin(x-2)}, & x\neq 2\\ 7, & x=2 \end{cases}$$
, where $P(x)$ is polynomial such that $P''(x)$ is always a constant and $P(3)=9$. If $f(x)$ is continuous at $x=2$, then $P(5)$ is equal to