

1. Given below are two statements:

Statement I:

lpha and eta forms of sulphur can change reversibly between themselves with slow heating or slow cooling.

Statement II:

At room temperature the stable crystalline form of sulphur is monoclinic sulphur.

In the light of the above statements, choose the correct answer from the options given below:

- A. Both Statement I and Statement II are true.
- B. Both Statement I and Statement II are false.
- C. Statement I is true but Statement II is false.
- D. Statement I is false but Statement II is true.

2. The correct order of electron gain enthalpy is:

$$A. \quad O>S>Se>Te$$

$$\mathbf{B.} \quad Te > Se > S > O$$

$$\textbf{C.} \quad S>O>Se>Te$$

$$\textbf{D.} \quad S>Se>Te>O$$

3. Match List - I with List -II

$$List-I$$

$$List-II$$

Name of oxo acid

Oxidation state of 'P'

- (a) Hypophosphorous acid
- (i) + 5
- (b) Orthophosphoric acid
- (ii) + 4
- (c) Hypophosphoric acid
- (iii) + 3
- (d) Orthophosphorous acid
- (iv) + 2
- (v) + 1

Choose the correct answer from the options given below:

- **A.** (a) -(iv), (b)-(v), (c)-(ii), (d)-(iii)
- **B.** (a) -(v), (b)-(iv), (c)-(ii), (d)-(iii)
- **C.** (a) -(v), (b)-(i), (c)-(ii), (d)-(iii)
- **D.** (a) -(iv), (b)-(v), (c)-(ii), (d)-(iii)
- 4. A group 15 element which is a metal and forms a hydride with strongest reducing power among group 15 hydrides. The element is
 - A. $_{As}$
 - **B**. *P*
 - C. Bi
 - D. Sb
- 5. Which of the following compound CANNOT act as a lewis base?
 - **A.** NF_3
 - B. PCl_5
 - C. ClF_3
 - D. SF_4

- 9. White phosphorus on reaction with concentrated NaOH solution in an inert atmosphere of CO_2 gives phosphine and compound (X). (X) on acidification with HCl gives compound (Y). The basicity of compound (Y) is
 - **A.** 3
 - **B.** 2
 - **C**. 4
 - **D**. 1
- 10. Reaction of ammonia with excess Cl_2 gives
 - **A.** $NH_4Cl \text{ and } HCl$
 - **B.** NCl_3 and HCl
 - C. NCl_3 and NH_4Cl
 - **D.** $NH_4Cl \text{ and } N_2$
- 11. Chemical nature of the nitrogen oxide compound obtained from a reaction of concentrated nitric acid and $P_4O_{10}(in\ 4:1\ ratio)$ is :
 - A. acidic
 - B. basic
 - C. neutral
 - D. amphoteric

12. What is the correct order of the following elements with respect to their density?

$$\textbf{A.} \quad Cr < Zn < Co < Cu < Fe$$

$$\textbf{B.} \quad Cr < Fe < Co < Cu < Zn$$

$$\textbf{C.} \quad Zn < Cu < Co < Fe < Cr$$

$$\textbf{D.} \quad Zn < Cr < Fe < Co < Cu$$

13. Given below are two statements:

Statement - I : CeO_2 can be used for oxidation of aldehyde and ketones.

Statement - II : Aqueous solution of $EuSO_4$ is a strong reducing agent.

In the light of the above statements, choose the correct answer from the options given below:

- A. Both Statement I and Statement II are false
- B. Both Statement I and Statement II are true
- C. Statement I is true but Statement II is false
- D. Statement I is false but Statement II is true
- 14. Fex_2 and Fey_3 are known when x and y are

A.
$$x = F, Cl, Br, I \text{ and } y = F, Cl, Br$$

$$\mathbf{B.}\quad x=Cl,Br,I \text{ and } y=F,Cl,Br,I$$

$$\textbf{C.} \quad x=F,Cl,Br \text{ and } y=F,Cl,Br,I$$

$$\textbf{D.} \quad x=F,Cl,Br,I \text{ and } y=F,Cl,Br,I$$

- 15. What is the spin-only magnetic moment value (B. M) of a divalent metal ion with atomic number 25, in it's aqueous solution?
 - **A** 5.92
 - **B**. 5.26
 - C. Zero
 - **D.** 5.0
- 16. Given below are two statements:

Statements I: Potassium permanganate on heating at 573 K forms potassium manganate.

Statement II: Both potassium permanganate and potassium manganate are tetrahedral and paramagnetic in nature.

In the light of the above statements, choose the most appropriate answer from the options given below :

- A. Statement I is false but statement II is true
- B. Both statement I and statement II are false
- C. Both statement I and statement II are true
- D. Statement I is true but statement II is false

- 17. The correct order of following 3d metal oxides, according to their oxidation number is
 - (a) CrO_3
 - (b) Fe_2O_3
 - (c) MnO_2
 - $(d) V_2 O_5$
 - (e) Cu_2O
 - **A.** (a) > (d) > (c) > (b) > (e)
 - **B.** (d) > (a) > (b) > (c) > (e)
 - **C.** (a)>(c)>(d)>(b)>(e)
 - **D.** (c)>(a)>(d)>(e)>(b)
- 18. The spin only magnetic moments (in BM) for free $Ti^{3+},\ V^{2+}\ and\ Sc^{3+}$ ions respectively are

$$(At. No - Sc: 21, Ti: 22, V: 23)$$

- **A.** 1.73, 3.87, 0
- **B.** 0, 3, 87, 1.73
- **C.** 3.87, 1.73, 0
- **D.** 1.73, 0, 3.87
- 19. Which one of the following lanthanides exhibits +2 oxidation state with diamagnetic nature ? (Given Z for $Nd=60,\ Yb=70,\ La=57, Ce=58$)
 - A. Nd
 - B. Yb
 - C. La
 - D. Ce

BYJU'S The Learning App

p-block and d & f-Block elements

20. Identify the element for which electronic configuration in +3 oxidation state

	is $[Ar]3d^5$:
	A. Mn
	B. Ru
	C. Co
	D. Fe
21.	Among the following allotropic forms of sulphur, the number of allotropic forms, which will show paramagnetism is $ (A) \ \alpha - sulphur \\ (B) \ \beta - sulphur \\ (C) \ S_2 - form $
22.	Among the following, the number of $halide(s)$ which is/are inert to hydrolysis is/are $ \begin{array}{ccc} (A) & BF_3 \\ (B) & SiCl_4 \\ (C) & PCI_5 \\ (D) & SF_6 \end{array} $
23.	The reaction of white phosphorus on boiling with alkali in inert atmosphere resulted in the formation of product $'A'$. The reaction of 1 $mol\ of\ 'A'$ with excess of $AgNO_3$ in aqueous medium gives mol(s) of Ag
	(Round off the Nearest integer).
24.	The number of halogen(s) forming halic (V) acid is/are
25.	The spin only magnetic moment of a divalent ion in aqueous solution (atomic number 29) is (nearest integer)
26.	In mildly alkaline medium, thiosulphate ion is oxidized by MnO_4^- to "A" . The oxidation state of sulphur in "A" is

- 27. In the ground state of atomic Fe(Z=26), the spin-only magnetic moment is $x\times 10^{-1}BM$. (Round off to the Nearest Integer).
- 28. Number of electrons present in 4f-orbital of Ho^{3+} ion is _____. (Given: Atomic no. of Ho=67)
- 29. The number of 4f electrons in the ground state electronic configuration of Gd^{2+} is _____. [Atomic number of Gd = 64]
- 30. The number of 'f' electrons in the ground state electronic configuration of $Np\ (Z=93)$ is _____.