

1. Given below are two statements:

Statement I:

 α and β forms of sulphur can change reversibly between themselves with slow heating or slow cooling.

Statement II:

At room temperature the stable crystalline form of sulphur is monoclinic sulphur.

In the light of the above statements, choose the correct answer from the options given below:

A. Both Statement I and Statement II are true.

B. Both Statement I and Statement II are false.

C. Statement I is true but Statement II is false.

x D. Statement I is false but Statement II is true.

Sulphur mainly exists in two allotropic forms: Rhombic and Monoclinic. The stable form at room temperature is rhombic sulphur(yellow in color), which transformed to monoclinic sulphur on heating at 369~K. $\alpha~and~\beta$ form of sulphur can change reversibly between themselves with slow heating or slow cooling.

2. The correct order of electron gain enthalpy is :

 $oldsymbol{(x)}$ A. O>S>Se>Te

 $oldsymbol{\mathsf{x}}$ C. S>O>Se>Te

 \bigcirc D. S > Se > Te > O

Electron affinity values for group 16 elements:

 $O=141\ kJ/mol$

 $S=200\ kJ/mol$

 $Se=195\ kJ/mol$

 $Te = 190 \; kJ/mol$

 $Po=174\; kJ/mol$

Correct order of electron gain enthalpy is

Copyright © Think and Learn Pvt. Ltd.

p-block and d & f-Block elements

3. Match List - I with List -II

$$List-I$$

$$List-II$$

Name of oxo acid

Oxidation state of 'P'

- (a) Hypophosphorous acid
- (i) + 5
- (b) Orthophosphoric acid
- (ii) + 4
- (c) Hypophosphoric acid
- (iii) + 3
- (d) Orthophosphorous acid
- (iv) + 2
- (v) + 1

Choose the correct answer from the options given below:

- (x)
- **A.** (a) -(iv), (b)-(v), (c)-(ii), (d)-(iii)
- ×
- **B.** (a) -(v), (b) -(iv), (c) -(ii), (d) -(iii)
- **(v**)
- **C.** (a) -(v), (b)-(i), (c)-(ii), (d)-(iii)
- (x)
- **D.** (a) -(iv), (b)-(v), (c)-(ii), (d)-(iii)

Hypophosphorous acid (H_3PO_2) +1

Orthophosphorous acid (H_3PO_3) +3

Hypophosphoric acid $(H_4P_2O_6)$ +4

Orthophosphoric acid (H_3PO_4) +5

Hence the correct option is (c).

- 4. A group 15 element which is a metal and forms a hydride with strongest reducing power among group 15 hydrides. The element is
 - (x)
- 4. $_{As}$
- ×
- **B.** *P*
- **(**
- C. $_{Bi}$
- ×
- D. Sb

The stability of hydrides decreases from $NH_3\ to\ BiH_3$ which can be observed from their bond dissociation enthalpy. Consequently, the reducing character of the hydrides increases. Ammonia is only a mild reducing agent while BiH_3 is the strongest reducing agent amongst all the hydrides

- 5. Which of the following compound CANNOT act as a lewis base?
 - $lackbox{ A. } NF_3$
 - lacksquare B. $_{PCl_{5}}$
 - lacktriangledown C. ClF_3
 - lacktriangle D. SF_4

Lewis base should have at least one lone pair of electrons in the valence shell of the central atom which is available for donation. PCl_5 cannot act as a Lewis base as the central atom P does not have lone pair of electrons.

- 6. Which one of the following group-5 hydride is the strongest reducing agent?
 - lacktriangledown A. AsH_3
 - lacksquare B. PH_3
 - f x C. SbH_3
 - lacksquare D. BiH_3

Down the group the bond dissociation enthalpy of M-H bond (where, M= group 15 element) decresaes.

Order of bond dissociation enthalpy:

$$N-H>P-H>As-H>Sb-H>Bi-H$$

Therefore, BiH_3 can loose hydrogen very easily and hence has the highest reducing power.

Order of reducing power:

$$NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$$

7. The product obtained from electrolytic oxidation of acidified sulphate solutions, is

 $lackbox{\textbf{B}}.$ HO_2SOSO_2H

 $lackbox{\textbf{C}}. \quad HSO_4^-$

 $lackbox{\textbf{D}}.$ HO_3SOSO_3H

Anode : $2H_2SO_4 \longrightarrow H_2S_2O_8 + 2H^+ + 2e^- \ 2H_2O \longrightarrow O_2 + 4H^+ + 4e^-$

Cathode : $e^- + H^+ \longrightarrow rac{1}{2} H_2$

Main product of electrolysis of conc. H_2SO_4 is HO_3SOOSO_3H $(H_2S_2O_8)$

- 8. Number of ${\it Cl}={\it O}$ bonds chlorous acid, chloric acid and perchloric acid respectively are
 - **A.** 1, 2 and 3
 - **B.** 4, 1 and 0
 - \mathbf{x} **c.** 1, 1 and 3
 - (x) D. $_{3,1 \text{ and } 1}$

perchloric acid So option (a) is correct

p- block and d & f-Block elements

- 9. White phosphorus on reaction with concentrated NaOH solution in an inert atmosphere of CO_2 gives phosphine and compound (X). (X) on acidification with HCl gives compound (Y). The basicity of compound (Y) is
 - **X** A. 3
 - **x** B. 2
 - **(x)** C. ₄
 - **D.** 1

 $P_4 + 3NaOH + 3H_2O
ightarrow 3NaH_2PO_2 \ (X) \xrightarrow{ ext{Acidification with } HCl} H_3PO_2(Y)$

Basicity of $H_3PO_2=1$ because only one ionisable hydrogen

- 10. Reaction of ammonia with excess Cl_2 gives
 - igwedge A. $NH_4Cl \text{ and } HCl$
 - lacksquare B. $NCl_3 \text{ and } HCl$
 - lacktriangle C. $NCl_3 \text{ and } NH_4Cl$
 - $lackbox{\textbf{D}}.$ $NH_4Cl ext{ and } N_2$

 $NH_3 + rac{3Cl_2}{ ext{(excess)}} \longrightarrow rac{NCl_3}{ ext{(explosive)}} + 3HCl$

Option (b) is correct

- 11. Chemical nature of the nitrogen oxide compound obtained from a reaction of concentrated nitric acid and $P_4O_{10}(in\ 4:1\ ratio)$ is :
 - A. acidic
 - **x** B. basic
 - x C. neutral
 - $egin{aligned} oldsymbol{\mathsf{M}} & oldsymbol{\mathsf{D}}. & \mathsf{amphoteric} \\ 4HNO_3 + P_4O_{10}
 ightarrow (HPO_3)_4 + 2N_2O_5 \\ N_2O_5 & \mathsf{is} \ \mathsf{acidic} \ \mathsf{in} \ \mathsf{nature} \end{aligned}$
- 12. What is the correct order of the following elements with respect to their density?
 - $oldsymbol{\mathsf{X}}$ A. Cr < Zn < Co < Cu < Fe

 - $oldsymbol{\mathsf{X}}$ C. Zn < Cu < Co < Fe < Cr
 - lacksquare D. Zn < Cr < Fe < Co < Cu

Elements	density in g/cm^3
Zn	7.1
Cr	7.19
Fe	7.8
Co	8.7
Cu	8.9

Option (d) is correct

13. Given below are two statements:

Statement - I : CeO_2 can be used for oxidation of aldehyde and ketones.

Statement - II : Aqueous solution of $EuSO_4$ is a strong reducing agent.

In the light of the above statements, choose the correct answer from the options given below:

- X A. Both Statement I and Statement II are false
- B. Both Statement I and Statement II are true
- C. Statement I is true but Statement II is false
- x D. Statement I is false but Statement II is true

Ce and Eu have stable oxidation state of +3.

The +3 oxidation state of lanthanide is most stable and therefore lanthanide in +4 oxidation state has strong tendence to gain electron and converted into +3 and therefore act as strong oxidizing agent. CeO_2 is used to oxidized alcohol aldehyde and ketones. Lanthanide in +2 oxidation state has strong tendency to loss electron and convert into +3 oxidation state therefore act as strong reducing agent.

So $Ce^{+4}O_2$ acts as oxidizing agent to get reduced to +3 and $Eu^{+2}O_4$ acts as reducing agent to get oxidized to +3 .

14. Fex_2 and Fey_3 are known when x and y are

$$lackbox{ A. } \quad x=F,Cl,Br,I ext{ and } y=F,Cl,Br$$

$$oldsymbol{\mathsf{x}}$$
 $oldsymbol{\mathsf{B}}$. $x=Cl,Br,I$ and $y=F,Cl,Br,I$

$$oldsymbol{\mathsf{X}}$$
 C. $x=F,Cl,Br$ and $y=F,Cl,Br,I$

$$oldsymbol{x}$$
 $oldsymbol{D}$. $x=F,Cl,Br,I$ and $y=F,Cl,Br,I$

 FeI_3 does not exist as I^- reduces Fe^{3+} to Fe^{2+} . $2FeI_3
ightarrow 2FeI_2 + I_2$

Unstable Stable

Due to strong reducing nature of I^-

$$2Fe^{3+}+2I^-
ightarrow 2Fe^{2+}+I_2$$

 FeF_2 , $FeCl_2$, $FeBr_2$, FeI_2 all exist

- 15. What is the spin-only magnetic moment value (B.M) of a divalent metal ion with atomic number 25, in it's aqueous solution?
 - **✓ A.** 5.92
 - **B**. 5.26
 - x C. Zero
 - **x D**. 5.0

The element having atomic number 25 is manganese. The electronic configuration of Mn^{2+} is : $Mn^{2+}:[Ar]\ 3d^5$

In aqueous solution it exists as $\left[Mn(H_2O)_6\right]^{2+}$. Since H_2O is a weak field ligand, it does not cause pairing of unpaired electrons .

4 4 4 4

So, its spin only magnetic moment is

$$\mu = \sqrt{n(n+2)} = \sqrt{5 imes 7} = 5.92~B.~M$$

16. Given below are two statements:

Statements I: Potassium permanganate on heating at 573 K forms potassium manganate.

Statement II: Both potassium permanganate and potassium manganate are tetrahedral and paramagnetic in nature.

In the light of the above statements, choose the most appropriate answer from the options given below:

- Statement I is false but statement II is true
- В. Both statement I and statement II are false
- Both statement I and statement II are true
- Statement I is true but statement II is false

 $KMnO_4$ on heating dissociates as

Manganate Permanganate

Both permanganate and manganate are trtrahdral but only manganate is paramagnetic.

 $Mn:3d^04s^0$ Diamagnetic

 $Mn:3d^14s^0$ Paramagnetic

: Statement I is true but statement II is false.

- The correct order of following 3d metal oxides, according to their oxidation number is
 - (a) CrO_3
 - (b) Fe_2O_3
 - $(c) MnO_2$
 - (d) V_2O_5
 - $(e) Cu_2O$
- (a) > (d) > (c) > (b) > (e)
- В. (d) > (a) > (b) > (c) > (e)
- C. (a)>(c)>(d)>(b)>(e)
- (c)>(a)>(d)>(e)>(b)

Oxidation state of oxygen is -2.

Metal oxide	Oxidation number
CrO_3	+6
Fe_2O_3	+3
MnO_2	+4
V_2O_5	+5
Cu_2O	+1

Hence, option (a) is correct.

18. The spin only magnetic moments (in BM) for free $Ti^{3+},\ V^{2+}\ and\ Sc^{3+}$ ions respectively are

(At. No - Sc: 21, Ti: 22, V: 23)

A. 1.73, 3.87, 0

B. 0, 3, 87, 1.73

C. 3.87, 1.73, 0

×

D. 1.73, 0, 3.87

Magnetic moment, $\mu = \sqrt{n(n+2)} \ BM$

where, n is number of unpaired electrons.

The electronic configuration and magnetic moment of the given species are

 $Ti^{3+}:3d^1$ (1 unpaired electron) $\mu=1.73~BM$

 $V^{2+}:3d^3$ (3 unpaired electron) $\mu=3.87~BM$

 $Sc^{3+}:3d^0$ (no unpaired electron) $\mu=0$

Hence, option (a) is correct.

19. Which one of the following lanthanides exhibits +2 oxidation state with diamagnetic nature ? (Given Z for $Nd=60,\ Yb=70,\ La=57, Ce=58$)

lacksquare B. Yb

Nd

lacktriangle C. La

 $Yb (70) = 4f^{14} 6s^2$

 $Yb^{2+}=4f^{14}\ 6s^0$

 $\dot{}$: All the electrons are paired hence Yb^{+2} is diamagnetic.

 $La=4f^0~5d^1~6s^2 \ La^{2+}=5d^1 \ La^{2+}$ is paramagnetic.

Ce and Nd does not form stable +2 oxidation state.

Hence, option (b) is correct.

p-block and d & f-Block elements

- 20. Identify the element for which electronic configuration in +3 oxidation state is $\lceil Ar \rceil 3d^5$:
 - $lackbox{ A. } Mn$
 - lacksquare B. Ru
 - **x** C. Co
 - lacksquare D. Fe
 - $Mn(25) = [Ar]3d^54s^2$
 - $Mn^{+3} = [Ar]3d^44s^0$

Ru – belongs to 4d transition series

$$Co(27) = [Ar] 3d^7 4s^2$$

$$Co^{+3} = [Ar] 3d^6 4s^0$$

$$Fe(26) = [Ar]3d^64s^2$$

$$Fe^{+3} = [Ar]3d^54s^0$$

Hence, option (d) is correct.

- 21. Among the following allotropic forms of sulphur, the number of allotropic forms, which will show paramagnetism is _____
 - (A) $\alpha sulphur$
 - (B) $\beta sulphur$
 - (C) S_2-form

Accepted Answers

1 1.0 1.00

Solution:

lpha-sulphur (Rhombic sulphur) and eta-sulphur (Monoclinic sulphur) are the two allotropes of sulphur which are diamagnetic. But the S_2 -form which exists at high temperature and has structure similar to O_2 is paramagnetic. So, 1 is the correct answer

- 22. Among the following, the number of halide(s) which is/are inert to hydrolysis is/are
 - (A) BF_3
 - (B) $SiCl_4$
 - (C) PCI_5
 - (D) SF_6

Accepted Answers

1 1.0 1.00

Solution:

 BF_3 – shows Partial hydrolysis

 $4BF_3 + 3H_2O \rightarrow H_3BO_3 + 3HBF_4$

 $SiCl_4$ – Undergoes hydrolysis readily.

 $SiCl_4 + 4H_2O
ightarrow Si(OH)_4 + 4HCl$

 PCl_5 – Undergoes hydrolysis by addition-elimination mechanism.

 $PCl_5 + H_2O \rightarrow POCl_3 + 2HCl$

 SF_6 – Inert towards hydrolysis.

So correct answer is 1

23. The reaction of white phosphorus on boiling with alkali in inert atmosphere resulted in the formation of product 'A'. The reaction of 1 mol of 'A' with excess of $AgNO_3$ in aqueous medium gives _____ mol(s) of Ag

(Round off the Nearest integer).

Accepted Answers

6

Solution:

$$P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$$

$$PH_3 + 6AgNO_3
ightarrow [Ag_3P.3AgNO_3] + 3HNO_3$$

$$Ag_3P.3AgNO_3 + 3H_2O \rightarrow 6Ag + 3HNO_3 + H_3PO_3$$

So, 1 mol of $PH_3(A)$ On reaction with excess of aq. $AgNO_3$ gives 6 moles of Ag.

24. The number of halogen(s) forming halic (V) acid is/are

Accepted Answers

3 3.0 3.00

Solution:

 XO_3^- can be formed by all the halides that have vacant d orbitals. Here X is halogen

Except F all other halogens (which are not radioactive) have vacant d orbitals.

So answer is 3 i.e. Cl, Br, I

25. The spin only magnetic moment of a divalent ion in aqueous solution (atomic number 29) is (nearest integer)

Accepted Answers

2 2.0 2.00

Solution:

The element having atomic no. 29 is copper The electronic configuration of $\,Cu^{2+}$ is

$$Cu^{2+}$$
 : $[Ar]\ 3d^9$

It has 1 unpaired electron

$$\mu = \sqrt{(n(n+2)} = \sqrt{3} = 1.73~BM = 2(nearestinteger)$$

26. In mildly alkaline medium, thiosulphate ion is oxidized by MnO_4^- to "A" . The oxidation state of sulphur in "A" is

Accepted Answers

Solution:

In neutral or faintly alkaline medium

$$8MnO_4^- + 3S_2O_3^{2-} + H_2O
ightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^- \ _{A()}$$

A is
$$SO_4^{2-}$$
 .

The oxidation state of sulphur in A is:

$$x - 8 = -2$$

$$x = +6$$

27. In the ground state of atomic Fe(Z=26), the spin-only magnetic moment is $x imes 10^{-1} BM$.

(Round off to the Nearest Integer).

Accepted Answers

Solution:

$$Fe(Z = 26)$$

Electrons configuration:

$$[Ar]4s^23d^6$$

Unpaired electrons:

$$n=4$$

$$\therefore \mu = \sqrt{4(4+2)} = \sqrt{24}BM$$

$$\mu = 4.89$$

$$\mu=49 imes10^{-1} B.\,M$$

$$x = 49$$

p- block and d & f-Block elements

28.	Number of electrons present in 4f-orbital of Ho^{3+} ion is (Given: Atomic no. of $Ho=67)$
	Accepted Answers
	10 10.0 10.00 Solution:
	Electronic configurations of Ho and Ho^{3+} are
	$Ho: 4f^{11} \ 6s^2$
	$Ho^{3+}:4f^{10}$
	\therefore Number of electrons present in $4f$ orbital of Ho^{3+} is 10 .
29.	The number of 4f electrons in the ground state electronic configuration of Gd^{2+} is
	[Atomic number of $Gd = 64$]
	Accepted Answers
	7 7.0 7.00
	Solution:
	Atomic number of Gd is 64
	Electronic configuration of Gd is $[Xe]4f^75d^16s^2$
	$Gd^{2+} = [Xe]4f^75d^1$
30.	The number of 'f' electrons in the ground state electronic configuration of $Np\ (Z=93)$ is
	Accepted Answers
	4 4.0 4.00 Solution:
	The electronic configuration of neptunium in ground state is $[Rn] \; 5f^4 \; 6d^1 \; 7s^2$
	\therefore It has 4 electrons in the f subshell of the anti penultimate shell.