

Subject: Mathematics

- 1. Let f and g be differentiable funcitons on R, such that $f \circ g$ is the identity funciton. If for some $a,b \in R, g'(a) = 5$ and g(a) = b, then f'(b) is equal to :
 - **X** A. $\frac{2}{5}$
 - **x** B. 5
 - **x** C. ₁
 - \bigcirc **D**. $\frac{1}{5}$

$$f(g(x)) = x \ f'(g(x))g'(x) = 1$$

$$f'(g(x))g'(x)=1$$

Put $x=a$
 $f'(g(a))g'(a)=1\Rightarrow f'(b) imes 5=1$

$$\Rightarrow f'(b) = \frac{1}{5}$$

2. Let y=y(x) be a function of x satisfying $y\sqrt{1-x^2}=k-x\sqrt{1-y^2}$ where k is a constant and $y\left(\frac{1}{2}\right)=-\frac{1}{4}$. Then $\frac{dy}{dx}$ at $x=\frac{1}{2}$ is equal to :

• A.
$$-\frac{\sqrt{5}}{2}$$

x B.
$$\frac{\sqrt{5}}{2}$$

x c.
$$-\frac{\sqrt{5}}{4}$$

D.
$$\frac{2}{\sqrt{5}}$$
 $y\sqrt{1-x^2} = k - x\sqrt{1-y^2}$

Differentiating w.r.t.
$$x$$
 on both the sides, we get

$$y'\sqrt{1-x^2} + y imes rac{1}{2\sqrt{1-x^2}} imes (-2x) \ = -\sqrt{1-y^2} - x imes rac{1}{2\sqrt{1-y^2}} imes (-2y)y'$$

$$\Rightarrow y'\sqrt{1-x^2}-rac{xy}{\sqrt{1-x^2}}=rac{xy}{\sqrt{1-y^2}}y'-\sqrt{1-y^2}$$

Putting
$$x=\frac{1}{2},\ y=-\frac{1}{4}$$
, we get

$$y' \left[\frac{\sqrt{3}}{2} - \frac{\frac{1}{8}}{\frac{\sqrt{15}}{4}} \right] = \frac{\frac{1}{8}}{\frac{\sqrt{3}}{2}} - \frac{\sqrt{15}}{4}$$

$$\Rightarrow y'\left\lceilrac{\sqrt{3}}{2}-rac{1}{2\sqrt{15}}
ight
ceil=rac{1}{4\sqrt{3}}-rac{\sqrt{15}}{4}$$

$$\Rightarrow y'\left[rac{\sqrt{45}-1}{2\sqrt{15}}
ight] = rac{1-\sqrt{45}}{4\sqrt{3}}$$

$$\Rightarrow y'\Big|_{x=1/2} = -\frac{\sqrt{5}}{2}$$

- 3. If Rolle's theorem holds for the function $f(x)=2x^3+bx^2+cx, x\in [-1,1]$,at the point $x=\frac{1}{2}$, then 2b+c equals :
 - **x** A. ₁
 - **x** B. 2
 - \bigcirc c. -1
 - **x** D. _3

By Rolle's theorem

$$f(1)=f(-1)$$

$$2 + b + c = -2 + b - c$$

$$\Rightarrow c = -2$$

$$f'(x) = 6x^2 + 2bx + c$$

$$f'(\frac{1}{2}) = \frac{3}{2} + b + c = 0$$

$$\Rightarrow b = rac{1}{2}$$

$$So_{1}(2b+c) = -1$$

- 4. If f and g are differentiable functions in [0,1] satisfying $f(0)=2=g(1),\ g(0)=0 \ \text{and} \ f(1)=6, \text{ then for some } c\in[0,1].$
 - $lackbox{ A.} \quad 2f'(c)=g'(c)$
 - **B.** 2f'(c) = 3g'(c)
 - $lackbox{\textbf{C}}. \quad f'(c) = g'(c)$
 - lacksquare D. f'(c)=2g'(c)

Let
$$h(x) = f(x) - 2g(x)...(1)$$

$$\therefore h(0) = f(0) - 2g(0) = 2 - 0 = 2$$

and
$$h(1) = f(1) - 2g(1) = 6 - 2(2) = 2$$

Thus, h(0)=h(1)=2

Now apply Rolle's theorem on equation (1),

h'(c)=0 where $c\in(0,1)$

Differentiating equation (1) w.r.t x

$$\therefore h'(x) = f'(x) - 2g'(x)$$

At
$$x = c$$
, $h'(c) = f'(c) - 2g'(c)$

Hence,
$$0=f'(c)-2g'(c)$$

$$\therefore f'(c) = 2g'(c)$$

- The derivative of $\tan^{-1}\left(\frac{\sin x \cos x}{\sin x + \cos x}\right)$, with respect to $\frac{x}{2}$, where $\left(x\in\left(0,rac{\pi}{2}
 ight)
 ight)$ is:

 - **B.** $\frac{1}{2}$ **C.** 2

 - **x** D. $\frac{2}{3}$

$$y = \tan^{-1} \left(\frac{\sin x - \cos x}{\sin x + \cos x} \right)$$

$$\Rightarrow y = an^{-1} igg(rac{ an x - 1}{ an x + 1} igg)$$

$$\Rightarrow y = - an^{-1}igg(rac{1- an x}{1+ an x}igg)$$

$$\Rightarrow y = - an^{-1}igg[anigg(rac{\pi}{4} - xigg)igg]$$

$$\because 0 < x < \frac{\pi}{2} \Rightarrow -\frac{\pi}{2} < -x < 0$$

$$\Rightarrow -rac{\pi}{4} < rac{\pi}{4} - x < rac{\pi}{4}$$

$$\Rightarrow y = -\left(rac{\pi}{4} - x
ight)$$

$$\Rightarrow y = -rac{\pi}{4} + x$$

$$rac{dy}{d(x/2)} = rac{1}{(1/2)} = 2$$

- 6. If P is a point on the parabola $y=x^2+4$ which is closest to the straight line y=4x-1, then the co-ordinates of P are
 - **A.** (-2,8)
 - **B.** (1,5)
 - \mathbf{x} **c.** (3,13)
 - \bigcirc **D.** (2,8)

Tangent at P is parallel to the given line.

$$\begin{vmatrix} dy \\ dx \end{vmatrix}_P = 4$$
 $\Rightarrow 2x_1 = 4$

Required point is (2,8)

- 7. The maximum area (in sq. units) of a rectangle having its base on the x-axis and its other two vertices on the parabola, $y=12-x^2$ such that the rectangle lies inside the parabola, is:
 - **x** A. ₃₆
 - **⊘** B. ₃₂
 - \mathbf{x} c. $20\sqrt{2}$
 - **x** D. $18\sqrt{3}$

$$\therefore AB = 2t$$

$$AD = 12 - t^2$$

area of rectangle ABCD

$$(A_r)=2t(12-t^2)$$

$$\Rightarrow A_r = 24t - 2t^3$$

 $\Rightarrow A_r = 24t - 2t^3$ To find maximum area -

$$rac{dA_r}{dt}$$
 $=24-6t^2=0$

$$\Rightarrow 24 - 6t^2 = 0$$

$$\Rightarrow t = \pm 2$$

$$egin{aligned} &\Rightarrow t = \pm 2 \ rac{d^2 A_r}{dt^2} = -12t \end{aligned}$$

at
$$t=2, rac{d^2A_r}{dt^2} < 0$$

$$\therefore A_r = |24(2) - 2(2)^3| = |48 - 16|$$

$$= |32|$$
 $\Rightarrow A_r = 32 ext{ sq. units}$

So, maximum area = 32 sq. units

8. The range of $a \in \mathbb{R}$ for which the function

$$f(x)=(4a-3)(x+\log_e 5)+2(a-7)\cot\left(rac{x}{2}
ight)\sin^2\left(rac{x}{2}
ight),\,x
eq 2n\pi,n\in\mathbb{N}$$
 has critical points, is:

$$lacksquare$$
 A. $\left[-\frac{4}{3}, 2\right]$

$$lacksquare$$
 B. $(-\infty,-1]$

$$lacktriangle$$
 C. $[1,\infty)$

$$lackbox{ D. } (-3,1)$$

$$f(x) = (4a-3)(x+\ln 5) + 2(a-7)\left(rac{\cosrac{x}{2}}{\sinrac{x}{2}}.\sin^2rac{x}{2}
ight)$$

$$f(x) = (4a - 3)(x + \ln 5) + (a - 7)\sin x$$

$$\Rightarrow f'(x) = (4a - 3) + (a - 7)\cos x = 0$$

$$\Rightarrow \cos x = -\frac{(4a-3)}{a-7}$$

$$\Rightarrow -1 \leq -\frac{(4-3)}{a-7} < 1 \quad (\because 1 \leq \cos x \leq 1)$$

$$\Rightarrow -1 < \frac{4a-3}{a-7} \le 1$$

$$\Rightarrow rac{4a-3}{a-7} - 1 \leq 0 ext{ and } rac{4a-3}{a-7} + 1 > 0$$

$$\Rightarrow a \in \left[-rac{4}{3},7
ight) ext{ and } a \in (-\infty,2) \cup (7,\infty)$$

$$\Rightarrow \frac{-4}{3} \leq a < 2$$

9. Let P(h, k) be a point on the curve $y = x^2 + 7x + 2$, nearest to the line, y = 3x - 3. Then the equation of the normal to the curve at P is:

A.
$$x + 3y - 62 = 0$$

B.
$$x - 3y - 11 = 0$$

C.
$$x-3y+22=0$$

D.
$$x + 3y + 26 = 0$$

$$C:y=x^2+7x+2$$

Let
$$\mathsf{P} : (h,k)$$
 lies on $\mathsf{Curve} k = h^2 + 7h + 2 \qquad \cdots (1)$

Now for the shortest distance

Slope of tangent line at point P =slope of line L

$$egin{array}{c} \left. rac{dy}{dx} \right|_{ ext{at P}(h,k)} \ \Rightarrow \left. rac{d}{dx} (x^2 + 7x + 2) \right|_{ ext{at P}(h,k)} = 3 \ \Rightarrow \left. (2x + 7) \right|_{ ext{at P}(h,k)} = 32h + 7 = 3 \ \end{array}$$

$$h = -2$$
 from equation (1)

$$k = -8$$

 $\stackrel{\circ}{P}:(-2,-8)$ equation of normal to the curve is perpendicular to

$$\mathsf{L}:3x-y=3$$

$$N: x+3y=\lambda$$
 pass through $(-2,-8)$

$$\Rightarrow \lambda = -26$$

$$\therefore \hat{N}: x + 3y + 26 = 0$$

10. If the tangent to the curve $y=x+\sin y$ at a point (a,b) is parallel to the line joining $\left(0,\frac{3}{2}\right)$ and $\left(\frac{1}{2},2\right)$ then:

B.
$$|a+b|=1$$

C.
$$|b-a|=1$$

$$\left. rac{dy}{dx}
ight|_{p(a,b)}^c = rac{2-rac{3}{2}}{1}$$

$$\left. egin{aligned} 1+\cos \mathrm{b} &= 1 \ \cos \mathrm{b} &= 0 \end{aligned}
ight|_{b=a+\sin b}^{p:(a,b)\mathrm{lies\ on\ curve}}$$

$$b = a \pm 1$$

$$|b-a|=1$$

- The shortest distance between the line x-y=1 and the curve $x^2=2y$ is :

 - **B.** 0
 - **c.** $\frac{1}{2\sqrt{2}}$

Shortest distance must be along common normal

- m_1 (slope of line x y = 1) = 1 \Rightarrow slope of perpendicular line = -1
- Slope of tangent line at $\left(h, \frac{h^2}{2}\right)$ is
- $m_2=rac{2x}{2}\!=x\Rightarrow m_2=h$
- \Rightarrow slope of normal $= -\frac{1}{h}$
- So, $-\frac{1}{h} = -1 \Rightarrow h = 1$
- so point is $\left(1, \frac{1}{2}\right)$

$$\Rightarrow D = \left| \frac{1 - \frac{1}{2} - 1}{\sqrt{1 + 1}} \right| = \frac{1}{2\sqrt{2}}$$

- 12. The function $f(x) = \frac{4x^3 3x^2}{6} 2\sin x + (2-1)\cos x$:
 - $lackbox{ A. increases in } \left[\frac{1}{2}, \infty\right)$
 - **B.** decreases $\left(-\infty, \frac{1}{2}\right]$
 - $oldsymbol{\mathsf{x}}$ **C.** increases in $\left(-\infty,\frac{1}{2}\right]$
 - $oldsymbol{x}$ **D.** decreases $\left[\frac{1}{2},\infty\right)$

$$f'(x) = (2x-1)(x-\sin x)$$

$$\Rightarrow f'(x) \geq 0 ext{ in } x \in (-\infty,0] \cup \left[rac{1}{2},\infty
ight)$$

and
$$f'(x) < 0$$
 in $x \in \left(0, rac{1}{2}
ight)$

13. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x)=\left\{egin{aligned} \left(2-\sin\left(rac{1}{x}
ight)
ight)|x|\,,\;x
eq0 \ 0,\;x=0 \end{aligned}
ight.$$
 . Then f is

- $oldsymbol{\mathsf{X}}$ $oldsymbol{\mathsf{A}}$. monotonic on $(0,\,\infty)$ only
- lacksquare B. Not monotonic on $(-\infty,\ 0)$ and $(0,\ \infty)$
- $oldsymbol{\mathsf{x}}$ **C.** monotonic on $(-\infty,\ 0)$ only
- $oldsymbol{\mathsf{X}}$ $oldsymbol{\mathsf{D}}$. monotonic on $(-\infty,\ 0)\cup(0,\ \infty)$

$$f\left(x
ight)=\left\{egin{array}{l} \left(2-\sin\left(rac{1}{x}
ight)
ight)\left|x
ight|,\;x
eq0 \ 0,\;x=0 \end{array}
ight.$$

$$\Rightarrow f\left(x
ight) = egin{cases} -\left(2-\sin\left(rac{1}{x}
ight)
ight)x, \ x < 0 \ 0, x = 0 \ \left(2-\sin\left(rac{1}{x}
ight)
ight)x, \ x > 0 \end{cases}$$

$$\Rightarrow f'\left(x
ight) = egin{cases} -x\left(-\cosrac{1}{x}
ight)\left(-rac{1}{x^2}
ight) - \left(2-\sinrac{1}{x}
ight),\; x < 0 \ x\left(-\cosrac{1}{x}
ight)\left(-rac{1}{x^2}
ight) + \left(2-\sinrac{1}{x}
ight),\; x > 0 \end{cases}$$

$$= \left\{ egin{aligned} -rac{1}{x} \cos rac{1}{x} + \sin rac{1}{x} - 2, \; x < 0 \ rac{1}{x} \cos rac{1}{x} - \sin rac{1}{x} + 2, \; x > 0 \end{aligned}
ight.$$

For x > 0.

$$f'(x) = \left(2 + rac{1}{x} cos rac{1}{x}
ight) - sin rac{1}{x}$$

here for $x\geq 1, \frac{1}{x}\in (0,1]$

$$\left(2+rac{1}{x} ext{cos } rac{1}{x}
ight) > ext{sin } rac{1}{x} \Rightarrow f'(x) > 0$$

But for, $x \in (0,1)$

$$f'(x) = \left(2 + rac{1}{x} ext{cos} \, rac{1}{x}
ight) - ext{sin} \, rac{1}{x}$$
 need not be greater than zero, as there exists

some values for
$$x \in (0,1)$$
 where $\left(2 + \dfrac{1}{x} ext{cos} \, \dfrac{1}{x}
ight) < \sin \dfrac{1}{x}$

So ,f(x) is not monotonic in $x\in(0,\infty)$

Similarly for $x \in (-\infty, 0), f(x)$ is not monotonic.

- 14. The value of $\lim_{x\to 0^+}\frac{\cos^{-1}(x-[x]^2)\cdot\sin^{-1}(x-[x]^2)}{x-x^3}$, where [x] denotes the greatest integer $\leq x$ is:
 - **x** A. (
 - lacksquare B. $\frac{\pi}{4}$
 - \bigcirc c. $\frac{\pi}{2}$
 - \mathbf{x} D. π

$$\lim_{x o 0^+} rac{\cos^{-1}ig(x-[x]^2ig)\sin^{-1}ig(x-[x]^2ig)}{x-x^3}$$

$$=\lim_{x o 0^+}rac{\cos^{-1}x\sin^{-1}x}{x(1-x^2)}\;\;(\because[0^+]=0)$$

$$=\frac{\cos^{-1}0^+}{1-0}=\frac{\pi}{2}$$

15. The equation of the normal to the curve $y=(1+x)^{2y}+\cos^2\left(\sin^{-1}x\right)$ at x=0 is

A.
$$y + 4x = 2$$

B.
$$2y + x = 4$$

C.
$$x + 4y = 8$$

X D.
$$y = 4x + 2$$

Given curve is $y=(1+x)^{2y}+\cos^2(\sin^{-1}x)$ At $x=0 \rightarrow y=1+\cos^2(0)=2$ Thus, the point is (0,2)

$$y = (1+x)^{2y} + \cos^2(\sin^{-1}x)$$

$$\Rightarrow y = (1+x)^{2y} + \cos^2(\cos^{-1}x) = (1+x)^{2y} + \left(\cos(\cos^{-1}x) - x^2\right)$$

$$= (1+x)^{2y} + \left(\cos(\cos^{-1}x) - x^2\right)$$

$$= (1+x)^{2y} + \left(\sqrt{1-x^2}\right)^2$$

$$\Rightarrow y = (1+x)^{2y} + 1 - x^2$$

Differentiating with respect to 'x'

$$y' = (1+x)^{2y} \left\{ \frac{2y}{1+x} + \ln(1+x).2y' \right\} - 2x$$

$$\left. ^{y^{\prime }}\right| _{(0,2)}=4-0$$

Equation of normal at $(0,2)is: y-2=-rac{1}{4}(x-0)$

$$\Rightarrow 4y - 8 = -x$$

$$\Rightarrow x + 4y = 8$$

16. If
$$y^2 + \log_e \left(\cos^2 x\right) = y, \; x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, then

- **A.** |y'(0)| + |y''(0)| = 1
- **B.** y''(0) = 0
- **C.** |y'(0)| + |y''(0)| = 3
- **D.** |y''(0)| = 2

Given:

$$y^2 + \log_e (\cos^2 x) = y \quad \cdots (i)$$

At x = 0

$$\Rightarrow y^2(0)+0=y(0)\Rightarrow y(0)=0,1$$

 $(\because y = y(x))$

differentiating (i) w.r.t. x

$$\Rightarrow 2yy' + 2 \ (-\tan x) = y' \ \cdots (ii)$$

At
$$(x,y) = (0,0) \Rightarrow y'(0) = 0$$

At
$$(x, y) = (0, 1) \Rightarrow y'(0) = 0$$

differentiating (ii) w.r.t. x

$$2yy'' + 2(y')^2 - 2\sec^2 x = y''$$

At
$$(x,y) = (0,0) \Rightarrow y''(0) = -2$$

At
$$(x,y) = (0,1) \Rightarrow y''(0) = 2$$

$$\therefore |y''(0)| = 2$$
 and

$$|y'(0)| + |y''(0)| = 2$$

17. Let f be a twice differentiable function on (1,6). If

$$f(2)=8,f'(2)=5,f'(x)\geq 1$$
 and $f''(x)\geq 4,$ for all $x\in (1,6),$ then

- - $f(5){+}f'(5)\geq 28$
- **B.** $f'(5) + f''(5) \le 20$
- **C.** $f(5) \leq 10$
- **D.** $f(5) + f'(5) \le 26$
- $f(2)=8, f'(2)=5, f'(x)\geq 1, f''(x)\geq 4\ orall\ x\in (1,6)$ Using LMVT,

$$f''(x) = rac{f'(5) - f'(2)}{5 - 2} \! \geq 4 \ orall \ x \in (1, 6)$$

$$\Rightarrow f'(5) \geq 17$$
 \cdots (1)

and

$$f'(x) = rac{f(5) - f(2)}{5 - 2} \! \geq 1 \ orall \ x \in (1, 6)$$

$$\Rightarrow f(5) \geq 11 \cdots (2)$$

Adding (1) and (2), we get

$$f(5) + f'(5) \geq 28$$

- 18. The area (in sq. units) of the largest rectangle ABCD whose vertices A and B lie on the x-axis and vertices C and D lie on the parabola, $y=x^2-1$ below the x-axis, is
 - **A.** $\frac{2}{3\sqrt{3}}$
 - **x** B. $\frac{4}{3}$
 - **x** c. $\frac{1}{3\sqrt{3}}$
 - **D.** $\frac{4}{3\sqrt{3}}$

$$egin{aligned} \mathsf{Area} &= 2a(a^2-1) \ \mathsf{(Say)}\ A &= 2a^3-2a \ \Rightarrow rac{dA}{da} &= 6a^2-2 \end{aligned}$$

For maximum and minimum, $\frac{dA}{da} = 0$

$$\therefore 6a^2 - 2 = 0$$
 $\Rightarrow a = \pm \frac{1}{\sqrt{3}}$
Now, $\frac{d^2A}{da^2} = 12a$
At $a = \frac{1}{\sqrt{3}}$
 $\Rightarrow \frac{d^2A}{da^2} = 4\sqrt{3} > 0$
 $\therefore a = \frac{1}{\sqrt{3}}$ (rejected)

At
$$a=-\frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{d^2A}{da^2} = -4\sqrt{3} < 0$$

$$\therefore \text{ Maximum area}$$

$$= (2a^3 - 2a) = \left(-\frac{2}{3\sqrt{3}} + \frac{2}{\sqrt{3}}\right)$$

$$= \frac{4}{3\sqrt{3}} \text{ sq. units}$$

19. Let
$$f(x)=\cosigg(2 an^{-1}\sinigg(\cot^{-1}\sqrt{rac{1-x}{x}}igg)igg),0< x< 1.$$
 Then

A.
$$(1-x)^2 f'(x) - 2(f(x))^2 = 0$$

B.
$$(1-x)^2 f'(x) + 2(f(x))^2 = 0$$

C.
$$(1+x)^2 f'(x) - 2(f(x))^2 = 0$$

D.
$$(1+x)^2 f'(x) + 2(f(x))^2 = 0$$

$$f(x) = \cos \left(2 an^{-1} \sin \left(\cot^{-1} \sqrt{rac{1-x}{x}}
ight)
ight)$$

Let
$$\dfrac{\sqrt{1-x}}{\sqrt{x}} = \cot \theta$$

 $\Rightarrow f(x) = \cos(2\tan^{-1}\sin \theta) = \cos(2\tan^{-1}(\sqrt{x}))$

Let
$$\sqrt{x} = \tan \theta$$

$$\Rightarrow f(x)=\cos 2 heta=2\cos^2 heta-1=rac{2}{1+x}-1=rac{1-x}{1+x}$$

$$\Rightarrow f'(x) = -rac{2}{(1+x)^2}$$

$$\Rightarrow (1-x)^2 f'(x) = -2 igg(rac{1-x}{1+x}igg)^2$$

$$\Rightarrow (1-x)^2f'(x)+2f^2(x)=0$$

20. Let f be a real valued function, defined on $\mathbb{R}-\{-1,1\}$ and given by $f(x)=3\log_e\left|\frac{x-1}{x+1}\right|-\frac{2}{x-1}$. Then in which of the following intervals, function f(x) is increasing?

$$lacksquare$$
 A. $(-\infty,-1) \cup \left(\left\lceil \frac{1}{2},\infty \right) - \{1\}\right)$

$$lackbox{\textbf{B}.}\quad \left(-1,rac{1}{2}
ight]$$

x c.
$$(-\infty, \infty) - \{-1, 1\}$$

$$\begin{array}{c} \textbf{D.} & \left(-\infty,\frac{1}{2}\right] - \{-1\} \\ f(x) = 3\log_e \left|\frac{x-1}{x+1}\right| - \frac{2}{x-1} \\ f'(x) = 3\left(\frac{x+1}{x-1} \times \frac{x+1-(x-1)}{(x+1)^2}\right) + \frac{2}{(x-1)^2} \end{array}$$

$$f'(x) = 3\left(rac{x+1}{x-1} imes rac{x+1}{(x+1)^2}
ight) + rac{2}{(x-1)} \ = rac{6}{(x-1)(x+1)} + rac{2}{(x-1)^2} \ = rac{4(2x-1)}{(x+1)(x-1)^2}$$

$$\therefore x \in (-\infty, -1) \cup \left[rac{1}{2}, \infty
ight) - \{1\}$$

- The maximum slope of the curve $y=rac{1}{2}x^4-5x^3+18x^2-19x$ occurs at the point:
 - (2, 9)
 - **B.** (2,2)
 - **x c**. $\left(3, \frac{21}{2}\right)$
 - **A D.** (0,0)

$$y=rac{1}{2}x^4-5x^3+18x^2-19x$$

$$\frac{dy}{dx} = 2x^3 - 15x^2 + 36x - 19$$

Let
$$f(x) = 2x^3 - 15x^2 + 36x - 19$$

 $f'(x) = 6x^2 - 30x + 36 = 0$

$$f'(x) = 6x^2 - 30x + 36 = 0$$

For extrema,
$$x^2 - 5x + 6 = 0$$

 $\Rightarrow x = 2, 3$

$$f''(x) = 12x - 30$$

$$f''(x) < 0$$
 for $x = 2$

So, at x = 2, slope is maximum.

$$y = 8 - 40 + 72 - 38$$

$$=72-70=2$$

Hence, maximum slope occurs at (2,2).

- 22. If the curves $y^2 = 6x$, $9x^2 + by^2 = 16$ intersect each other at right angles, then the value of b is :
 - ✓ A.
 - **(x)** B. 6
 - **x** c. $\frac{7}{2}$
 - **x** D. ₄

Let the point of intersection be (x_1,y_1) finding slope of both the curves at point of intersection for $y^2=6x,9x^2+by^2=16$

$$2y\frac{dy}{dx}=6, m_1=\frac{6}{2y_1}$$

And
$$18x+2by\dfrac{dy}{dx}=0, m_2=-\dfrac{18x_1}{2by_1}$$

$$m_1m_2=-1 \ \Rightarrow \left(rac{6}{2y_1}
ight)\left(rac{-18x_1}{2by_1}
ight)=-1$$

$$\Rightarrow rac{(5)(-18)x_1}{(4b)(6x_1)} = -1 \Rightarrow b = rac{9}{2}$$

23. If
$$y(\alpha)=\sqrt{2\left(\frac{\tan\ \alpha+\cot\ \alpha}{1+\tan^2\alpha}\right)+\frac{1}{\sin^2\alpha}}$$
 where $\alpha\in\left(\frac{3\pi}{4},\pi\right)$, then $\frac{dy}{d\alpha}$ at $\alpha=\frac{5\pi}{6}$ is

X A.
$$-\frac{1}{4}$$

x B.
$$\frac{4}{3}$$

$$lacktriangle$$
 D. -4

$$y(lpha) = \sqrt{2\left(rac{ an \; lpha + \cot \; lpha}{1 + an^2 \; lpha}
ight) + rac{1}{\sin^2 lpha}}$$

$$\Rightarrow y(lpha) = \sqrt{rac{2}{\sinlpha\,\coslpha imesrac{1}{\cos^2lpha}} + rac{1}{\sin^2lpha}}$$

$$\Rightarrow y(\alpha) = \sqrt{2\cot \alpha + \mathrm{cosec}^2 \alpha}$$

$$\Rightarrow y(lpha) = \sqrt{(1+\cotlpha)^2}$$

$$\phi \Rightarrow y(lpha) = -1 - \cot lpha \quad \left[\because lpha \in \left(rac{3\pi}{4}, \pi
ight)
ight]$$

$$\frac{dy}{d\alpha} = 0 + \csc^2 \alpha$$

$$\Rightarrow \left. rac{dy}{dlpha} \right|_{x=rac{5\pi}{6}} = \mathrm{cosec}^2rac{5\pi}{6}$$

$$\Rightarrow rac{dy}{dlpha}igg|_{x=rac{5\pi}{6}}=4$$

- 24. Let $f: \mathbf{R} \to \mathbf{R}$ be a function such that $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3), x \in \mathbf{R}$. Then f(2) equals :
 - Α.
 - В. 30
 - C.
 - D.
 - $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3) \ \Rightarrow f'(x) = 3x^2 + 2x f'(1) + f''(2) \cdots (i)$

 - $\Rightarrow f''(x) = 6x + 2f'(1) \cdot \cdot \cdot (ii)$
 - $\Rightarrow f'''(x) = 6 \cdots (iii)$
 - $\Rightarrow f'''(3) = 6$

Now from eqn (i)

- f'(1) = 3 + 2f'(1) + f''(2)
- $\Rightarrow f'(1) + f''(2) + 3 = 0 \cdots (iv)$

from eqn (ii)

- f''(2) = 12 + 2f'(1)
- $\Rightarrow 2f'(1) f''(2) + 12 = 0 \cdots (v)$

from eqn. (iv) and (v)

- 3f'(1) + 15 = 0
- $\Rightarrow f'(1) = -5$ and f''(2) = 2

So.

- $f(x) = x^3 5x^2 + 2x + 6$
- $\Rightarrow f(2) = 8 20 + 4 + 6 = -2$

25. Let the normal at a point P on the curve $y^2-3x^2+y+10=0$ intersects the y-axis at $\left(0,\frac{3}{2}\right)$. If m is the slope of the tangent at P to the curve, them |m| is equal to

Accepted Answers

Solution:

Let co-ordinates of P be (x_1,y_1) Differentiating the curve w.r.t. x2yy'-6x+y'=0Slope of tangent at $P(x_1,y_1)$ is

$$y'=rac{6x_1}{1+2y_1}$$

$$m_{ ext{normal}} = rac{y_1 - rac{2}{2}}{x_1 - 0}$$

$$m_{\text{normal}} \times m = -1$$

$$\Rightarrow rac{y_1-rac{3}{2}}{x_1} imesrac{6x_1}{1+2y_1}=-1 \ \Rightarrow y_1=1 \ \Rightarrow x_1=\pm 2$$

Therefore, slope of tangent
$$=\pm\frac{12}{3}=\pm4$$
 $\Rightarrow |m|=4$

26. Let $f:[-1,1] \to \mathbb{R}$ be defined as $f(x)=ax^2+bx+c$ for all $x \in [-1,1]$, where $a,b,c \in \mathbb{R}$ such that f(-1)=2,f'(-1)=1 and for $x \in (-1,1)$ the maximum value of f''(x) is $\frac{1}{2}$. If $f(x) \le \alpha, x \in [-1,1]$, then the least value of α is equal to

Accepted Answers

Solution:

$$f(x) = ax^2 + bx + c$$

$$f'(x) = 2ax + b$$

$$f''(x) = 2a$$

We know

$$f(-1) = 2$$

$$\Rightarrow a-b+c=2\cdots(1)$$

$$f'(-1)=1$$

$$\Rightarrow b - 2a = 1 \cdots (2)$$

$$f''(x) \leq rac{1}{2}$$

$$\Rightarrow a \leq \frac{1}{4} \cdots (3)$$

From equations (1) and (2), we get

$$b = 1 + 2a, \ c = 3 + a$$

$$\Rightarrow f(x) = ax^2 + (1+2a)x + (3+a)$$

$$\Rightarrow f(x) = a(x+1)^2 + (x+3)$$

To get the maximum value of f(x), a should be maximum, so

$$a=rac{1}{4}$$

$$f(x) = \frac{(x+1)^2}{4} + (x+3)$$

$$\Rightarrow f(x) \in [2,5], \ x \in [-1,1]$$

As
$$f(x) \leq \alpha, x \in [-1,1]$$

$$\alpha = 5$$

27. Suppose a differentiable function f(x) satisfies the identity

$$f(x+y)=f(x)+f(y)+xy^2+x^2y$$
 for all real x and y . If $\lim_{x o 0}rac{f(x)}{x}=1$, then $f'(3)$ is equal to

Accepted Answers

Solution:

Given:
$$f(x+y)=f(x)+f(y)+xy^2+x^2y$$
 At $x=y=0$ $f(0)=2f(0)\Rightarrow f(0)=0$

Now,
$$f'(x) = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$
 (take $y = h$)

(take
$$y = h$$
)

(take
$$y=h$$
)
$$f'(x)=\lim_{h\to 0}\frac{f(h)}{h}+\lim_{h\to 0}(xh)+x^2$$

$$f'(x)=1+0+x^2$$

$$f'(x)=1+x^2$$

$$f'(x) = 1 + 0 + x^2$$

$$f'(x)=1+x^2$$

$$f'(3) = 10$$

28. If a rectangle is inscribed in an equilateral triangle of side length $2\sqrt{2}$ as shown in the figure, then the square of the largest area of such a rectangle is

Accepted Answers

3 3.0 3.00

Solution:

Let the sides of rectangle be x and y.

and area
$$\Delta = xy$$

$$\Rightarrow \Delta = y \left(2\sqrt{2} - rac{2y}{\sqrt{3}}
ight)$$

$$A\Rightarrow \Delta = \left(2\sqrt{2}y - rac{2y^2}{\sqrt{3}}
ight)$$

Differentiation w.r.t. x, we get

$$rac{d\Delta}{dx} = \left(2\sqrt{2} - rac{4y}{\sqrt{3}}
ight)$$

For max/min $\frac{d\Delta}{dx} = 0$

$$\Rightarrow \left(2\sqrt{2} - \frac{4y}{\sqrt{3}}\right) = 0$$

$$\Rightarrow y = rac{\sqrt{6}}{2}$$

Now,
$$\dfrac{d^2\Delta}{dx^2}$$
 $=$ $\left(0-\dfrac{4}{\sqrt{3}}
ight)<0$

$$\therefore$$
 area is maximum at $y=rac{\sqrt{6}}{2}$

So, mximum area
$$\Delta_{max} = \sqrt{2} imes rac{\sqrt{6}}{2} = \sqrt{3}$$

Hence,
$$\Delta^2_{max}=3$$

29. Let f(x) be a cubic polynomial with f(1)=-10, f(-1)=6, and has a local minima at x=1, and f'(x) has a local minima at x=-1. Then f(3) is equal to

Accepted Answers

Solution:

$$f(1)=-10,\ f(-1)=6$$
 $f'(1)=0$ and $f''(-1)=0$ as given $f(x)$ has minima at $x=1$ and $f'(x)$ has minima at $x=-1$ So, $f''(x)=a(x+1)$ Integrating both sides $f'(x)=\frac{a}{2}(x+1)^2+c$ $f'(1)=0=2a+c$ $\Rightarrow c=-2a$

 $f'(x) = \frac{a}{2}(x+1)^2 - 2a$ Intergrating both side

Intergrating both side
$$f(x) = \frac{a}{6}(x+1)^3 - 2xa + c'$$

$$f(1) = -10 = \frac{8a}{6} - 2a + c'$$

$$f(-1) = 6 = 2a + c'$$

$$2a + c' = 6$$

$$4a - 6c' = 60$$

$$\Rightarrow a = 6, c' = -6$$

$$f(x) = (x+1)^3 - 12x - 6$$

$$f(3) = (4)^3 - 36 - 6$$

$$f(3) = 22$$

If the point on the curve $y^2=6x$, nearest to the point $\left(3,\frac{3}{2}\right)$ is (α,β) then $2(\alpha + \beta)$ is equal to

Accepted Answers

9.0 9.00

Solution:

Let a point on $y^2=6x$ is $P\left(\frac{3}{2}t^2,3t\right)$

The distance between P and $\left(3, \frac{3}{2}\right)$ is D.

$$\therefore D^2 = \left(rac{3t^2}{2} - 3
ight)^2 + \left(3t - rac{3}{2}
ight)^2$$

$$=9\left(rac{t^4}{4}\!-t^2+1+t^2-t+rac{1}{4}
ight)$$

$$=rac{9}{4}ig(t^4-4t+5ig)$$

$$\therefore 2D. \ rac{dD}{dt} = rac{9}{4}(4t^3 - 4) = 9(t - 1)(t^2 + t + 1)$$

$$\therefore$$
 For $t=1, D^2$ will be minimum.

$$\therefore \text{ For } t = 1, D^2 \text{ will be minimum.}$$

$$\therefore P = \left(\frac{3}{2}, 3\right) = (\alpha, \beta)$$

$$\therefore 2(\alpha + \beta) = 9$$