

Subject: Mathematics

- 1. The value of $\lim_{x \to 1} \left(\frac{4}{\pi} \tan^{-1} x \right) \frac{1}{x^2 1}$ is equal to
 - A. $\frac{1}{\pi}$
 - **B.** $-\frac{1}{\pi}$
 - C. $e^{1/\pi}$
 - **D.** $e^{-1/\pi}$
- 2. Let $f(x)=x^2-6x+5$ and m is the number of points of non-derivability of y=|f(|x|)|. If $|f(|x|)|=k, k\in\mathbb{R}$ has at least m distinct solution(s), then the number of integral values of k is
 - **A.** 2
 - **B.** 3
 - C. Z
 - **D.** 5
- 3. Let $f(x)=\left\{egin{array}{c} rac{-x^2}{2} -\cos x \ \hline x\ln(1+x)\sin x(e^x-1), & x
 eq 0 \end{array}
 ight.$

If f(x) is continuous at x = 0, then k equals

- **A.** $\frac{1}{4}$
- **B.** $\frac{1}{6}$
- **C.** $\frac{1}{12}$
- **D.** $\frac{1}{8}$

- 4. $f(x)=(2x-3\pi)^5+rac{4}{3}x+\cos x$ and g is the inverse function of f. Then $g'(2\pi)$ is equal to
 - **A.** $\frac{7}{3}$
 - **B.** $\frac{3}{7}$
 - **c.** $\frac{30\pi^4 + 4}{3}$
 - **D.** $\frac{3}{30\pi^4 + 4}$
- 5. The radius of a right circular cylinder increases at the rate of $0.1~\rm cm/min$, and the height decreases at the rate of $0.2~\rm cm/min$. The rate of change of the volume of the cylinder, in $\rm cm^3/min$, when the radius is $2~\rm cm$ and the height is $3~\rm cm$ is

(The negative sign(-) indicates that volume decreases)

- **A.** $-\frac{2\pi}{5}$
- **B.** $\frac{8\pi}{5}$
- **c.** $-\frac{3\pi}{5}$
- **D.** $\frac{2\pi}{5}$
- 6. If a variable tangent to the curve $x^2y=c^3$ makes intercepts a,b on x and y-axis respectively, then the value of a^2b is
 - **A.** $27c^3$
 - **B.** $\frac{4}{27}c^3$
 - **C.** $\frac{27}{4}c^3$
 - **D.** $\frac{4}{9}c^3$

- 7. The absolute difference between the greatest and the least values of the function $f(x) = x(\ln x 2)$ on $[1, e^2]$ is
 - **A**. 2
 - B. ₆
 - C. e^2
 - **D**. 1
- 8. In which of the following functions is Rolle's theorem applicable?

A.
$$f(x)=\left\{egin{array}{ll} x, & 0\leq x<1 \ 0, & x=1 \end{array}
ight.$$
 on $[0,1]$

B.
$$f(x)=\left\{egin{array}{ll} \dfrac{\sin x}{x}, & -\pi \leq x < 0 \\ 0, & x=0 \end{array}
ight.$$
 on $[-\pi,0]$

C.
$$f(x) = \frac{x^2 - x - 6}{x - 1}$$
 on $[-2, 3]$

D.
$$f(x) = \begin{cases} \frac{x^3 - 2x^2 - 5x + 6}{x - 1}, & \text{if } x \neq 1, \\ -6, & \text{if } x = 1 \end{cases}$$
 on $[-2, 3]$

- 9. Let the function f be defined by $f(x) = x \ln x$, for all x > 0. Then
 - **A.** f is increasing on $(0, e^{-1})$
 - **B.** f is decreasing on (0,1)
 - **C.** The graph of f is concave down for all x
 - **D.** The graph of f is concave up for all x

- 10. If $x=3\cos\theta-\cos3\theta$ and $y=3\sin\theta-\sin3\theta$, then $\frac{dy}{dx}$ is
 - A. $\tan 2\theta$
 - B. $\sin 2\theta$
 - C. $-\tan 2\theta$
 - **D.** $\cot 2\theta$
- 11. Let $\cos^{-1}(x) + \cos^{-1}(2x) + \cos^{-1}(3x) = \pi$, where x > 0. If x satisfies the cubic equation $ax^3 + bx^2 + cx 1 = 0$, then a + b + c has the value equal to
 - **A.** 24
 - **B.** 25
 - \mathbf{C} . 26
 - **D.** 28
- 12. If a,b,c are the sides opposite to angles A,B,C of a triangle ABC, respectively and $\angle A=\frac{\pi}{3},\ b:c=\sqrt{3}+1:2,$ then the value of $\angle B-\angle C$ is
 - A. $\frac{\pi}{12}$
 - $\mathbf{B.} \quad \frac{\pi}{6}$
 - C. $\frac{\pi}{4}$
 - $\mathbf{D.} \quad \frac{\pi}{2}$

13. The value of
$$\tan^{-1}\frac{4}{7} + \tan^{-1}\frac{4}{19} + \tan^{-1}\frac{4}{39} + \tan^{-1}\frac{4}{67} + \cdots \infty$$
 equals

A.
$$\tan^{-1} 1 + \tan^{-1} \frac{1}{2}$$

B.
$$\frac{\pi}{2} - \cot^{-1} 2$$

C.
$$\frac{\pi}{2} - \cot^{-1} 1$$

D.
$$\cot^{-1} 1 + \tan^{-1} 3$$

14. The solution set of the inequality

$$(\cot^{-1}x)(\tan^{-1}x)+\left(2-rac{\pi}{2}
ight)\cot^{-1}x-3 an^{-1}x-3\left(2-rac{\pi}{2}
ight)>0,$$
 is

A.
$$x \in (\tan 2, \tan 3)$$

B.
$$x \in (\cot 3, \cot 2)$$

C.
$$x \in (-\infty, \tan 2) \cup (\tan 3, \infty)$$

D.
$$x \in (-\infty, \cot 3) \cup (\cot 2, \infty)$$

- 15. If two sides of a triangle are the roots of $x^2-7x+8=0$ and the angle between these sides is $\frac{\pi}{3}$, then the product of inradius and circumradius of the triangle is
 - **A.** $\frac{8}{7}$
 - **B.** $\frac{5}{3}$
 - **C.** $\frac{5\sqrt{2}}{3}$
 - **D**. 8

16. The value of

$$an^{-1}\sqrt{rac{a(a+b+c)}{bc}}+ an^{-1}\sqrt{rac{b(a+b+c)}{ca}}+ an^{-1}\sqrt{rac{c(a+b+c)}{ab}},$$
 where $a,b,c>0,$ is

- A. $\frac{\pi}{4}$
- $\mathbf{B.} \quad \frac{\pi}{2}$
- C. π
- **D**. 0
- 17. In a triangle ABC, altitudes from vertices A and B have lengths 3 and 6 respectively. Then the exhaustive set of values of the length of altitude from vertex C is
 - **A.** (3,7)
 - **B.** (2,6)
 - **C.** (3,4)
 - **D.** (1,5)
- 18. The value of $\lim_{n\to\infty} \frac{\{x\}+\{2x\}+\ldots+\{nx\}}{n^2}$ is (where $\{x\}$ denotes the fractional part of x)
 - **A.** 0
 - **B.** ₁
 - **C.** ∞
 - D. It does not exist

BYJU'S The Learning Ap

JEE Main Part Test 3

19. The derivative of
$$\ln\left(\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}\right)$$
 with respect to $\cos(\ln x)$ is

$$\mathbf{A.} \quad \frac{2x}{\sqrt{(1+x^2)}\sin(\ln x)}$$

$$\mathbf{B.} \quad -\frac{2x}{\sqrt{(1+x^2)}\sin(\ln x)}$$

$$\mathbf{D.} \quad -\frac{4x}{\sqrt{(1+x^2)}\sin(\ln x)}$$

20. In $\triangle ABC$, sides opposite to angles A,B,C are denoted by a,b,c respectively. If $\angle A=60^\circ, a=5, b=2\sqrt{3}$, then $\angle B=$

A.
$$\sin^{-1} \frac{3}{5}$$

B.
$$\sin^{-1}\frac{4}{5}$$

C.
$$180^{\circ} - \sin^{-1} \frac{3}{5}$$

D.
$$180^{\circ} - \sin^{-1} \frac{4}{5}$$

21. If $\sin^{-1}(\sin p) = 3\pi - p$ and the point of intersection of the lines x + y = 6 and px - y = 3 will have integral co-ordinates (both abscissa and ordinate), then the number of values of p is

22. Let
$$L_1 = \lim_{x \to 0} \frac{\cos(\pi x)(e^{\lambda x} - 1)}{\pi \sin x}$$
 and $L_2 = \lim_{x \to 0} \frac{\ln(1 - x) + \sin 2x}{x}$. If $L_1 = L_2$, then the value of $[\lambda]$ is (Note: $[\lambda]$ denotes the largest integer less than or equal to λ .)

23. If the value of $\lim_{x\to 0}\left(\frac{x^n\sin^nx}{x^n-\sin^nx}\right)$ is non-zero finite, then n is equal to

24. Let
$$f(x)=x^2+px+3$$
 and $g(x)=x+q$, where $p,q\in\mathbb{R}$. If
$$F(x)=\lim_{n\to\infty}\frac{f(x)+x^ng(x)}{1+x^n} \text{is derivable at } x=1 \text{, then the value of } p^2+q^2 \text{ is }$$

- 25. The number of point(s) of non-differentiability for $f(x)=[e^x]+|x^2-3x+2|$ in (-1,3) is (where [.] denotes greatest integer function, $e^3=20.1$)
- 26. If $f(x)=\left\{egin{array}{ll} a+\sin^{-1}(x+b), & x\geq 1 \\ x, & x<1 \end{array}
 ight.$ is differentiable function, then value of a+b is
- 27. If $f(x)=\tan^{-1}\frac{x}{1+\sqrt{(1-x^2)}}+\sin\biggl\{2\tan^{-1}\sqrt{\biggl(\frac{1-x}{1+x}\biggr)}\biggr\}, x\in(0,1),$ then the value of $f'\left(\frac{1}{2}\right)$ is
- 28. The normal at the point $P\left(2,\frac{1}{2}\right)$ on the curve xy=1 meets the curve again at Q. If m is the slope of the curve at Q, then the value of |m| is
- 29. Let $f(x)=|x^2-4x+3|$ be a function defined on $x\in[0,4]$ and α,β,γ are the abscissas of the critical points of f(x). If m and M are the local and absolute maximum values of f(x) respectively, then the value of $\alpha^2+\beta^2+\gamma^2+m^2+M^2$ is
- 30. The minimum value of α for which the equation $\frac{4}{\sin x} + \frac{1}{1-\sin x} = \alpha$ has at least one solution in $\left(0,\frac{\pi}{2}\right)$ is