

Subject: Mathematics

The value of $\lim_{x \to 1} \left(rac{4}{\pi} an^{-1} \, x
ight)^{rac{1}{x^2 \, - \, 1}}$ is equal to 1.

$$lacksquare$$
 B. $-\frac{1}{\pi}$

$$lacksquare$$
 C. $e^{1/\pi}$

$$oldsymbol{\mathsf{X}}$$
 D. $e^{-1/\pi}$

$$\lim_{x \to 1} \left(\frac{4}{\pi} \tan^{-1} x\right)^{\frac{1}{x^2 - 1}}$$

$$= e^{\lim_{x \to 1} \frac{\left(\frac{4}{\pi} \tan^{-1} x - 1\right)}{x^2 - 1}}$$

$$= e^L \text{ (say)}$$

Now,
$$L=\lim_{x o 1}rac{\left(rac{4}{\pi} an^{-1}x-1
ight)}{x^2-1}$$

Using L'Hospital's rule,

Using L'Hospital's rule,
$$L=\lim_{x\to 1}rac{\left(rac{4}{\pi(1+x^2)}
ight)}{2x}$$
 $\Rightarrow L=rac{4}{4\pi}=rac{1}{\pi}$

Therefore,
$$\lim_{x o 1}\left(rac{4}{\pi} an^{-1}\,x
ight)^{rac{1}{x^2-1}}=e^{1/\pi}$$

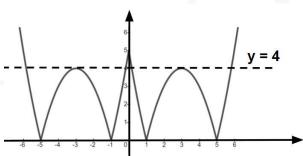
- 2. Let $f(x)=x^2-6x+5$ and m is the number of points of non-derivability of y=|f(|x|)|. If $|f(|x|)|=k, k\in\mathbb{R}$ has at least m distinct solution(s), then the number of integral values of k is
 - **x** A. 2
 - **x** B. 3
 - **c.** 4
 - **x D.** 5

Given : $f(x) = x^2 - 6x + 5 = (x - 1)(x - 5)$ Vertex of the parabola

$$= \left(-\frac{b}{2a}, -\frac{\dot{D}}{4a}\right)$$

=(3,-4)

The graph of y=|f(|x|)|=|(|x|-1)(|x|-5)| is



Clearly, y=|f(|x|)| is non-derivable at 5 points. For |f(|x|)|=k to have at least 5 solutions, $0< k \leq 4$

Hence, the number of integral values of k is 4.

3. Let
$$f(x)=\left\{egin{array}{c} rac{-x^2}{2} & & & \\ rac{e^{\displaystyle \frac{-x^2}{2}}-\cos x}{x\ln(1+x)\sin x(e^x-1)}, & & x
eq 0 \end{array}
ight..$$

If f(x) is continuous at x = 0, then k equals

x A.
$$\frac{1}{4}$$

x B.
$$\frac{1}{6}$$

• c.
$$\frac{1}{12}$$

$$\bigcirc$$
 D. $\frac{1}{8}$

$$k=\lim_{x
ightarrow0}rac{e^{\displaystylerac{-x^2}{2}}-\cos x}{x\ln(1+x)\sin x(e^x-1)}$$

$$k=\lim_{x
ightarrow0}rac{e^{\displaystylerac{-x^{2}}{2}}-\cos x}{x^{4}}$$

$$=\lim_{x
ightarrow 0}rac{\left(1-rac{x^2}{2}+rac{x^4}{8}-\ldots
ight)-\left(1-rac{x^2}{2}+rac{x^4}{4!}-\ldots
ight)}{x^4}$$

$$=\frac{1}{8}-\frac{1}{24}=\frac{1}{12}$$

4. $f(x) = (2x - 3\pi)^5 + \frac{4}{3}x + \cos x$ and g is the inverse function of f. Then $g'(2\pi)$ is equal to

$$\mathbf{x}$$
 A. $\frac{7}{3}$

B.
$$\frac{3}{7}$$

c.
$$\frac{30\pi^4 + 4}{3}$$

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{X} & \textbf{D.} & \frac{3}{30\pi^4+4} \\ \hline \text{Since, } g \text{ is the inverse function of } f, \\ \hline \end{array}$$

$$\Rightarrow gig(f(x)ig) = x$$

Differentiate w.r.t. x, we get

$$g'(f(x)) \cdot f'(x) = 1$$

 $\Rightarrow g'(f(x)) = \frac{1}{f'(x)}$

Now,
$$f(x) = (2x - 3\pi)^5 + \frac{4}{3}x + \cos x$$

$$f'(x) = 5(2x - 3\pi)^4 + \frac{4}{3} - \sin x$$

$$\therefore g'\big(f(x)\big) = \frac{1}{5(2x - 3\pi)^4 + \frac{4}{3} - \sin x}$$

When
$$f(x)=2\pi,$$
 $2\pi=(2x-3\pi)^5+rac{4}{3}x+\cos x$

Since, in L.H.S., the power of π is 1 and in R.H.S. the power of $(2x-3\pi)$ is 5, so solution exists only when $x = \frac{3\pi}{2}$

$$\therefore g'(2\pi) = \frac{1}{\frac{4}{3} + 1} = \frac{3}{7}$$

5. The radius of a right circular cylinder increases at the rate of $0.1~\rm cm/min$, and the height decreases at the rate of $0.2~\rm cm/min$. The rate of change of the volume of the cylinder, in $\rm cm^3/min$, when the radius is $2~\rm cm$ and the height is $3~\rm cm$ is

(The negative sign(-) indicates that volume decreases)

A.
$$-\frac{2\pi}{5}$$

X B.
$$\frac{8\pi}{5}$$

x c.
$$-\frac{3\pi}{5}$$

D.
$$\frac{2\pi}{5}$$

Let r and h be the radius and height of the cylinder respectively.

Given,
$$r=2~\mathrm{cm},~h=3~\mathrm{cm}$$

$$rac{dr}{dt} = 0.1 ext{ cm/min} \ rac{dh}{dt} = -0.2 ext{ cm/min}$$

$$V=\pi r^2 h$$

Differentiating both sides

$$egin{aligned} rac{dV}{dt} &= \pi \left(r^2 rac{dh}{dt} + 2 r rac{dr}{dt} h
ight) \ &= \pi r \left(r rac{dh}{dt} + 2 rac{dr}{dt} h
ight) \ &= \pi r \left(r (-0.2) + 2 h (0.1)
ight) \ &= rac{\pi r}{5} (-r + h) \end{aligned}$$

Thus, when r=2 and h=3,

$$\frac{dV}{dt} = \frac{\pi(2)}{5}(-2+3) = \frac{2\pi}{5} \text{cm}^3/\text{min}$$

If a variable tangent to the curve $x^2y=c^3$ makes intercepts a,b on x and yaxis respectively, then the value of a^2b is

B.
$$\frac{4}{27}c^3$$

$$ightharpoonup$$
 C. $\frac{27}{4}c^3$

X D.
$$\frac{4}{9}c^3$$

$$x^2y = c^3$$

$$\Rightarrow x^2 \frac{dy}{dx} + 2xy = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{2y}{x}$$
Equation of tangent at (x, y)

$$Y - y = -\frac{2y}{x}(X - x)$$

$$Y=0,$$
 gives, $X=rac{3x}{2}=a$

and
$$X = 0$$
, gives, $Y = 3y = b$

$$a^2b = rac{9x^2}{4} imes 3y \ = rac{27}{4} x^2 y = rac{27}{4} c^3$$

- 7. The absolute difference between the greatest and the least values of the function $f(x)=x(\ln x-2)$ on $\left[1,e^2\right]$ is
 - **X** A. 2
 - lacksquare B. e
 - \mathbf{x} C. e^2
 - **x** D. 1

 $f(x) = x(\ln x - 2)$

$$\Rightarrow f'(x) = x\left(\frac{1}{x}\right) + (\ln x - 2) = \ln x - 1$$

$$\Rightarrow f'(x) = \ln x - 1$$

 $f'(x) = 0 \Rightarrow x = e$

For $x \in [1,e), \ f'(x) < 0$ and for $x \in (e,e^2], \ f'(x) > 0$

So, the minimum value of f(x) occurs at x = e

Now,
$$f(1) = -2$$

 $\Rightarrow f(e) = -e$ (least)
 $\Rightarrow f(e^2) = 0$ (greatest)

Hence,
$$|f(e^2) - f(e)| = |0 - (-e)| = e$$

In which of the following functions is Rolle's theorem applicable?

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} x, & 0 \leq x < 1 \ 0, & x = 1 \end{aligned} \end{aligned}$$
 on $[0,1]$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \sin x, & -\pi \leq x < 0 \\ 0, & x = 0 \end{aligned} \end{aligned} ext{ on } [-\pi, 0]$$

C.
$$f(x) = \frac{x^2 - x - 6}{x - 1}$$
 on $[-2, 3]$

$$f(x) = \begin{cases} \frac{x^3 - 2x^2 - 5x + 6}{x - 1}, & \text{if } x \neq 1, \\ -6, & \text{if } x = 1 \end{cases}$$

$$f(x) = \begin{cases} x - 1 & \text{on } [-2, 3] \\ -6, & \text{if } x = 1 \end{cases}$$

$$f(x) = \left\{egin{array}{ll} x, & 0 \leq x < 1 \ 0, & x = 1 \end{array}
ight.$$
 on $[0,1]$

Discontinuous at x = 1, so Rolle's theorem is not applicable.

$$f(x) = \left\{ egin{array}{ll} rac{\sin x}{x}, & -\pi \leq x < 0 \ 0, & x = 0 \end{array}
ight.$$
 on $[-\pi, 0]$

f(x) is not continuous at x=0

So, Rolle's theorem is not applicable.

$$f(x) = \frac{x^2 - x - 6}{x - 1}$$
 on $[-2, 3]$

Discontinuity at x=1

So, Rolle's theorem is not applicable.

$$f(x) = \left\{ egin{array}{ll} rac{x^3 - 2x^2 - 5x + 6}{x - 1}, & ext{if } x
eq 1, \ -6, & ext{if } x = 1 \end{array}
ight.$$
 on $[-2, 3]$

$$\lim_{x \to 1} \frac{x^3 - 2x^2 - 5x + 6}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x - 1)(x^2 - x - 6)}{x - 1}$$

$$= \lim_{x \to 1} (x^2 - x - 6)$$

$$= -6$$

 $\Rightarrow f$ is continuous at x = 1 and differentiable in (-2,3)

Also,
$$f(-2) = f(3) = 0$$

By Roll's theorem,

$$f'(x)=2x-1=0\Rightarrow x=-\frac{1}{2}$$

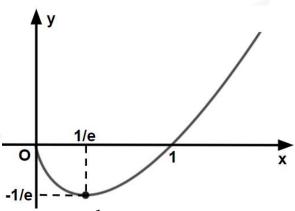
Thus, $\frac{1}{2}$ lies between -2 and 3.

So, Rolle's theorem is applicable.

- 9. Let the function f be defined by $f(x) = x \ln x$, for all x > 0. Then
 - **A.** f is increasing on $(0, e^{-1})$
 - **B.** f is decreasing on (0,1)
 - f x **C.** The graph of f is concave down for all x
 - **D.** The graph of f is concave up for all x

$$egin{aligned} rac{dy}{dx} &= 1 + \ln x \ rac{dy}{dx} &= 0 \Rightarrow x = e^{-1} = rac{1}{e} \end{aligned}$$

 \Rightarrow It is increasing on $\left(\frac{1}{e}, \infty\right)$ and decreasing on $\left(0, \frac{1}{e}\right)$



Clearly, $x = \frac{1}{e}$ gives local minima

and
$$f\left(\frac{1}{e}\right) = -\frac{1}{e}$$

Also,
$$\dfrac{d^2y}{dx^2}=\dfrac{1}{x}\!>0 \quad (\because x>0)$$

 \Rightarrow Concave up for all x > 0

- 10. If $x=3\cos\theta-\cos3\theta$ and $y=3\sin\theta-\sin3\theta$, then $\frac{dy}{dx}$ is
 - lacksquare A. an 2 heta
 - \mathbf{x} B. $\sin 2\theta$
 - lacktriangle C. $-\tan 2\theta$
 - $lackbox{\textbf{D}.}$ $\cot 2\theta$

We have,

$$\frac{dx}{d\theta} = -3\sin\theta + 3\sin 3\theta$$

$$\frac{dy}{d\theta} = 3\cos\theta - 3\cos 3\theta$$

$$\Rightarrow \frac{dy}{dx} = \frac{3\cos\theta - 3\cos 3\theta}{-3\sin\theta + 3\sin 3\theta}$$

$$= \frac{\cos\theta - \cos 3\theta}{\sin 3\theta - \sin \theta} \cdots (1)$$

Since,
$$\cos C - \cos D = 2 \sin \left(\frac{C+D}{2} \right) \sin \left(\frac{D-C}{2} \right)$$

and,
$$\sin C - \sin D = 2 \sin igg(rac{C-D}{2} igg) \cos igg(rac{C+D}{2} igg)$$

equation (1) can be written as
$$\frac{\sin 2\theta \sin \theta}{\cos 2\theta \sin \theta} = \tan 2\theta$$

- 11. Let $\cos^{-1}(x) + \cos^{-1}(2x) + \cos^{-1}(3x) = \pi$, where x > 0. If x satisfies the cubic equation $ax^3 + bx^2 + cx - 1 = 0$, then a + b + c has the value equal to
 - 24
 - В. 25
 - 26
 - D. 28

We have,

$$\cos^{-1}(x) + \cos^{-1}(2x) + \cos^{-1}(3x) = \pi$$

$$\Rightarrow \cos^{-1}(2x) + \cos^{-1}(3x) = \pi - \cos^{-1}(x)$$

$$\Rightarrow \cos^{-1}\left[(2x)(3x) - \sqrt{1 - 4x^2}\sqrt{1 - 9x^2}\right] = \cos^{-1}(-x)$$

$$\Rightarrow 6x^{2} - \sqrt{1 - 4x^{2}} \cdot \sqrt{1 - 9x^{2}} = -x$$
$$\Rightarrow (6x^{2} + x)^{2} = (1 - 4x^{2})(1 - 9x^{2})$$

$$\Rightarrow (6x^2+x)^2 = (1-4x^2)(1-9x^2)$$

$$\Rightarrow x^2 + 12x^3 = 1 - 13x^2$$

$$\Rightarrow x^{2} + 12x^{3} = 1 - 13x^{2}$$

 $\Rightarrow 12x^{3} + 14x^{2} - 1 = 0$... (1)

x satisfies the equation $ax^3 + bx^2 + cx - 1 = 0$

Comparing this equation with equation (1), we get

$$a = 12, b = 14, c = 0$$

$$\therefore a + b + c = 12 + 14 + 0 = 26$$

12. If a, b, c are the sides opposite to angles A, B, C of a triangle ABC, respectively and $\angle A = \frac{\pi}{3}, \ b: c = \sqrt{3} + 1: 2,$ then the value of $\angle B - \angle C$ is

$$\mathbf{X}$$
 A. $\frac{\pi}{12}$

$$\bigcirc$$
 B. $\frac{\pi}{6}$

$$\mathbf{x}$$
 C. $\frac{\pi}{4}$

$$\mathbf{x}$$
 C. $\frac{\pi}{4}$ D. $\frac{\pi}{2}$

$$\frac{b}{c} = \frac{\sqrt{3}+1}{2}$$

$$\Rightarrow \frac{b-c}{b+c} = \frac{\sqrt{3}+1-2}{\sqrt{3}+1+2}$$

$$\Rightarrow \frac{b-c}{b+c} = \frac{\sqrt{3}-1}{\sqrt{3}+3}$$

Now,
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$

$$\Rightarrow \tan \frac{B-C}{2} = \frac{\sqrt{3}-1}{\sqrt{3}+3} \cdot \sqrt{3}$$

$$\Rightarrow \tan \frac{B-C}{2} = \frac{\sqrt{3}-1}{\sqrt{3}+1} = 2 - \sqrt{3}$$

$$\Rightarrow \frac{B-C}{2} = \frac{\pi}{12}$$

$$\Rightarrow B-C = \frac{\pi}{6}$$

13. The value of
$$\tan^{-1}\frac{4}{7} + \tan^{-1}\frac{4}{19} + \tan^{-1}\frac{4}{39} + \tan^{-1}\frac{4}{67} + \cdots \infty$$
 equals

A.
$$\tan^{-1} 1 + \tan^{-1} \frac{1}{2}$$

B.
$$\frac{\pi}{2} - \cot^{-1} 2$$

C.
$$\frac{\pi}{2} - \cot^{-1} 1$$

X D.
$$\cot^{-1} 1 + \tan^{-1} 3$$

Let
$$S = 7 + 19 + 39 + 67 + \cdots + T_n$$

 $S = 0 + 7 + 19 + 39 + 67 + \cdots + T_{n-1} + T_n$

Subtracting the above equations, we get $T_n = 7 + 12 + 20 + 28 + \cdots + (T_n - T_{n-1})$

$$I_n = 7 + 12 + 20 + 28 + \dots + (I_n)$$

$$= 7 + \frac{n-1}{2}[24 + 8(n-2)]$$

$$= 4n^2 + 3$$

Now,
$$T_n'= an^{-1}igg(rac{4}{4n^2+3}igg)= an^{-1}\Bigg(rac{1}{n^2+rac{3}{4}}igg)$$

$$=\tan^{-1}\frac{1}{1+\left(n^2-\frac{1}{4}\right)}$$

$$= \tan^{-1} \left[\frac{\left(n + \frac{1}{2}\right) - \left(n - \frac{1}{2}\right)}{1 + \left(n + \frac{1}{2}\right)\left(n - \frac{1}{2}\right)} \right]$$

$$= an^{-1}igg(n+rac{1}{2}igg)- an^{-1}igg(n-rac{1}{2}igg)$$

Hence,
$$S_\infty=\sum_{n=1}^\infty T_n'=rac{\pi}{2}- an^{-1}rac{1}{2}$$
 $=rac{\pi}{2}-\cot^{-1}2$

14. The solution set of the inequality

$$(\cot^{-1}x)(\tan^{-1}x)+\left(2-rac{\pi}{2}
ight)\cot^{-1}x-3 an^{-1}x-3\left(2-rac{\pi}{2}
ight)>0,$$
 is

- **A.** $x \in (\tan 2, \tan 3)$
- $m{ullet}$ **B.** $x \in (\cot 3, \cot 2)$
- **C.** $x \in (-\infty, \tan 2) \cup (\tan 3, \infty)$
- **X** D. $x \in (-\infty, \cot 3) \cup (\cot 2, \infty)$

$$\begin{aligned} & \text{Given, } (\cot^{-1}x)(\tan^{-1}x) + \left(2 - \frac{\pi}{2}\right)\cot^{-1}x - 3\tan^{-1}x - 3\left(2 - \frac{\pi}{2}\right) > 0 \\ & \Rightarrow \cot^{-1}x\left(\tan^{-1}x + 2 - \frac{\pi}{2}\right) - 3\left(\tan^{-1}x + 2 - \frac{\pi}{2}\right) > 0 \end{aligned}$$

As $an^{-1}x-rac{\pi}{2}\!=\!-\cot^{-1}x,$ we get

$$(\cot^{-1}x - 3)(2 - \cot^{-1}x) > 0$$

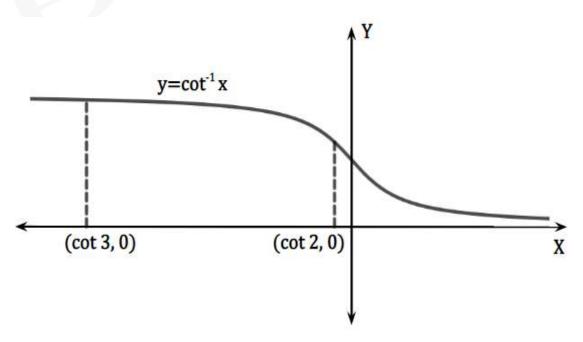
$$\Rightarrow (\cot^{-1} x - 3)(\cot^{-1} x - 2) < 0$$

$$\Rightarrow 2 < \cot^{-1} x < 3$$

$$\Rightarrow \cot 3 < x < \cot 2$$

 $\begin{array}{l} \Rightarrow 2 < \cot^{-1} x < 3 \\ \Rightarrow \cot 3 < x < \cot 2 \\ (\because \cot^{-1} x \text{ is a decreasing function}) \end{array}$

Hence, $x \in (\cot 3, \cot 2)$



- 15. If two sides of a triangle are the roots of $x^2-7x+8=0$ and the angle between these sides is $\frac{\pi}{3}$, then the product of inradius and circumradius of the triangle is
 - **X** A. $\frac{8}{7}$
 - **B.** $\frac{5}{3}$
 - **x** c. $\frac{5\sqrt{2}}{3}$
 - **x** D. ₈

Let a, b, c be the sides of the triangle. a and b are roots of $x^2 - 7x + 8 = 0$ $\Rightarrow a + b = 7$ and ab = 8

$$\Rightarrow a+b=7$$
 and $ab=8$ $C=rac{\pi}{3}$

$$\Rightarrow \cos C = \frac{1}{2} = \frac{a^2 + b^2 - c^2}{2ab}$$

$$\Rightarrow ab = a^2 + b^2 - c^2$$

$$\Rightarrow c^2 = (a+b)^2 - 3ab = 49 - 24 = 25$$

$$\Rightarrow c = 5$$

$$\therefore rR = rac{\Delta}{s} imes rac{abc}{4\Delta} \ = rac{abc}{2(a+b+c)} = rac{5}{3}$$

16. The value of

$$an^{-1}\sqrt{rac{a(a+b+c)}{bc}}+ an^{-1}\sqrt{rac{b(a+b+c)}{ca}}+ an^{-1}\sqrt{rac{c(a+b+c)}{ab}},$$
 where $a,b,c>0,$ is

- \mathbf{x} B. $\frac{\pi}{2}$
- **C.** π
- **x D.** ₀

BYJU'S The Learning App

JEE Main Part Test 3

$$S = \underbrace{ an^{-1}\sqrt{rac{a(a+b+c)}{bc}}}_x + \underbrace{ an^{-1}\sqrt{rac{b(a+b+c)}{ca}}}_y + \underbrace{ an^{-1}\sqrt{rac{c(a+b+c)}{ab}}}_z$$

Let
$$an^{-1}\sqrt{rac{a(a+b+c)}{bc}}=x$$
 $\Rightarrow an x=\sqrt{rac{a(a+b+c)}{bc}}$

$$an^{-1}\sqrt{rac{b(a+b+c)}{ca}} = y$$
 $\Rightarrow an y = \sqrt{rac{b(a+b+c)}{ca}}$

and
$$\tan^{-1}\sqrt{\dfrac{c(a+b+c)}{ab}}=z$$
 $\Rightarrow \tan z=\sqrt{\dfrac{c(a+b+c)}{ab}}$

Now, $\tan x + \tan y + \tan z$

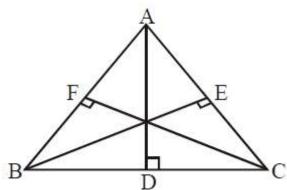
$$egin{align} &=\sqrt{a+b+c}\left(\sqrt{rac{a}{bc}}+\sqrt{rac{b}{ca}}+\sqrt{rac{c}{ab}}
ight) \ &=\sqrt{a+b+c}\left(rac{a+b+c}{\sqrt{abc}}
ight) \ &=rac{(a+b+c)^{3/2}}{(abc)^{1/2}} \ \end{gathered}$$

 $\tan x \cdot \tan y \cdot \tan z$

$$egin{align*} & constant & cons$$

So, $\tan x + \tan y + \tan z = \tan x \cdot \tan y \cdot \tan z$ As x, y, z are positive, $\Rightarrow x + y + z = \pi$

- 17. In a triangle ABC, altitudes from vertices A and B have lengths 3 and 6 respectively. Then the exhaustive set of values of the length of altitude from vertex C is
 - **A.** (3,7)
 - **B.** (2,6)
 - lacktriangleright C. (3,4)
 - $lacktriangled{\mathbf{x}}$ **D.** (1,5)



Let altitudes from vertices A,B and C have lengths h_a,h_b and h_c respectively. Then $h_a=3$ and $h_b=6$

We know that

$$|a-b| < c < a+b \ \Rightarrow \left|rac{2\Delta}{h_a} - rac{2\Delta}{h_b}
ight| < rac{2\Delta}{h_c} < rac{2\Delta}{h_a} + rac{2\Delta}{h_b},$$

where Δ denotes the area of triangle ABC.

$$\Rightarrow \left| \frac{1}{3} - \frac{1}{6} \right| < \frac{1}{h_c} < \frac{1}{3} + \frac{1}{6}$$

$$\Rightarrow \frac{1}{6} < \frac{1}{h_c} < \frac{1}{2}$$

$$\Rightarrow h_c \in (2,6)$$

- The value of $\lim_{n o \infty} rac{\{x\} + \{2x\} + \ldots + \{nx\}}{n^2}$ is (where $\{x\}$ denotes the fractional part of x)

 - В.
 - C.
 - D. It does not exist

We know,

$$0 \le \{f(x)\} < 1$$

$$\Rightarrow \frac{0}{n^2} \le \frac{\{x\} + \{2x\} + \dots + \{nx\}}{n^2} < \frac{n}{n^2}$$

$$\Rightarrow \lim_{n \to \infty} \frac{0}{n^2} \le \lim_{n \to \infty} \frac{\{x\} + \{2x\} + \dots + \{nx\}}{n^2} < \lim_{n \to \infty} \frac{1}{n}$$

$$\{x\} + \{2x\} + \dots + \{nx\}$$

$$\Rightarrow 0 \leq \lim_{n \to \infty} \frac{\{x\} + \{2x\} + \ldots \ldots + \{nx\}}{n^2} < 0$$

$$\therefore$$
 Using sandwich theorem, we have: $\lim_{n o \infty} rac{\{x\} + \{2x\} + \ldots \ldots + \{nx\}}{n^2} = 0$

19. The derivative of
$$\ln\left(\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}\right)$$
 with respect to $\cos(\ln x)$ is

A.
$$\frac{2x}{\sqrt{(1+x^2)}\sin(\ln x)}$$

Let
$$y=\ln\!\left(rac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}
ight)$$
 $\Rightarrow y=\ln\!\left(\sqrt{1+x^2}+x
ight)-\ln\!\left(\sqrt{1+x^2}-x
ight)$

$$\Rightarrow rac{dy}{dx} = rac{\left(1 + rac{2x}{2\sqrt{1+x^2}}
ight)}{\sqrt{1+x^2}+x} - rac{\left(rac{2x}{2\sqrt{1+x^2}}-1
ight)}{\sqrt{1+x^2}-x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}} + \frac{1}{\sqrt{1+x^2}}$$

$$\Rightarrow rac{dy}{dx} = rac{2}{\sqrt{1+x^2}}$$

Let
$$z = \cos(\ln x)$$

$$\Rightarrow \frac{dz}{dx} = -\frac{\sin(\ln x)}{x}$$

Therefore,
$$\frac{dy}{dz} = \frac{dy}{dx} \times \frac{dx}{dz}$$

$$\Rightarrow rac{dy}{dz} = -rac{dz}{\sqrt{1+x^2}\sin(\ln x)}$$

- 20. In $\triangle ABC$, sides opposite to angles A, B, C are denoted by a, b, c respectively. If $\angle A=60^\circ, a=5, b=2\sqrt{3}$, then $\angle B=$
 - - A. $\sin^{-1} \frac{3}{5}$
 - - **B.** $\sin^{-1}\frac{4}{5}$

 - **C.** $180^{\circ} \sin^{-1} \frac{3}{5}$
 - - **D.** $180^{\circ} \sin^{-1} \frac{4}{5}$

Given:

$$\angle A=60^{\circ}, a=5, b=2\sqrt{3}$$

Using sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k$

$$ightarrow rac{5}{\sin 60^\circ} = rac{2\sqrt{3}}{\sin B}$$

$$\Rightarrow \sin B = \frac{3}{5}$$

$$\therefore B = \sin^{-1}\frac{3}{5}$$

or $180^{\circ} - \sin^{-1} \frac{3}{5}$ (obtuse angle)

As,
$$a > b$$

$$\Rightarrow \angle A > \angle B$$

So, $\angle B$ is acute angle.

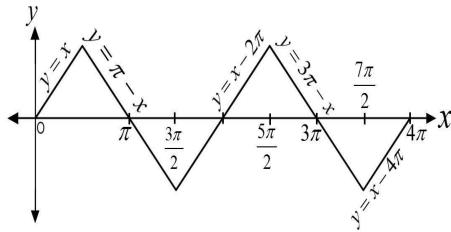
$$\therefore \angle B = \sin^{-1} \frac{3}{5}$$

21. If $\sin^{-1}(\sin p) = 3\pi - p$ and the point of intersection of the lines x + y = 6 and px - y = 3 will have integral co-ordinates (both abscissa and ordinate), then the number of values of p is

Accepted Answers

Solution:

Given : $\sin^{-1}(\sin p) = 3\pi - p$



We know that
$$\sin^{-1}(\sin x)=3\pi-x$$
 iff $\frac{5\pi}{2}\leq x\leq \frac{7\pi}{2}$

$$\Rightarrow p \in \left[\frac{5\pi}{2}, \frac{7\pi}{2}\right]$$

Now given lines are : x+y=6 and px-y=3 (solving both)

$$\Rightarrow$$
 Point of intersection of lines is $\left(\frac{9}{1+p},\frac{6p-3}{1+p}\right)$

∵ Co-ordinates are integral,

$$\Rightarrow \frac{9}{1+p} \in \mathbb{Z}$$

$$\Rightarrow$$
 1 + $p = \pm 1$ (or) 1 + $p = \pm 3$ (or) 1 + $p = \pm 9$

$$\Rightarrow p \in \{-10, -4, -2, 0, 2, 8\}$$

$$\Rightarrow 1+p = \pm 1 \text{ (or) } 1+p = \pm 3 \text{ (or) } 1+p = \pm 9 \ \Rightarrow p \in \{-10,-4,-2,0,2,8\}$$
 Also, $\frac{6p-3}{1+p} \in \mathbb{Z}$ for $p \in \{-10,-4,-2,0,2,8\}$

But
$$p \in \left[rac{5\pi}{2}, rac{7\pi}{2}
ight]$$

$$\therefore p = 8$$

 \therefore Number of possible value of p is 1.

22. Let
$$L_1=\lim_{x\to 0}rac{\cos(\pi x)(e^{\lambda x}-1)}{\pi\sin x}$$
 and $L_2=\lim_{x\to 0}rac{\ln(1-x)+\sin 2x}{x}$. If $L_1=L_2$, then the value of $[\lambda]$ is

(Note: $[\lambda]$ denotes the largest integer less than or equal to λ .)

Accepted Answers

Solution:

$$egin{aligned} L_1 &= \lim_{x o 0} rac{\cos(\pi x)(e^{\lambda x} - 1)}{\pi \sin x} \ \Rightarrow L_1 &= \lim_{x o 0} rac{\cos(\pi x)(e^{\lambda x} - 1)\lambda}{\pi(\lambda x) rac{\sin x}{x}} \ \Rightarrow L_1 &= rac{\lambda}{\pi} \quad \cdots (1) \ L_2 &= \lim_{x o 0} rac{\ln(1 - x) + \sin 2x}{x} \ \Rightarrow L_2 &= \lim_{x o 0} rac{\ln(1 - x)}{x} + \lim_{x o 0} rac{2 \sin 2x}{2x} \ \Rightarrow L_2 &= -1 + 2 = 1 \quad \cdots (2) \ ext{We know that,} \ L_1 &= L_2 \ ext{Using equation (1) and (2),} \end{aligned}$$

$$L_1 = L_2$$

$$\Rightarrow \frac{\lambda}{\pi} = 1$$

$$\Rightarrow \lambda = \pi$$

$$\Rightarrow [\lambda] = 3$$

23. If the value of $\lim_{x\to 0} \left(\frac{x^n \sin^n x}{x^n - \sin^n x}\right)$ is non-zero finite, then n is equal to

Accepted Answers

Solution:

$$\lim_{x o 0}rac{x^n\sin^nx}{x^n-\sin^nx}=\lim_{x o 0}rac{x^{2n}rac{\sin^nx}{x^n}}{x^n-\sin^nx}=\lim_{x o 0}rac{x^{2n}\sin^nx}{x^n-\sin^nx}$$

Now, using expansion we have:

$$=\lim_{x o 0}rac{x^{2n}}{x^n-\left(x-rac{x^3}{3!}+rac{x^5}{5!}-\cdots
ight)^n} \ =\lim_{x o 0}rac{x^n}{1-\left(1-rac{x^2}{3!}+rac{x^4}{5!}-\cdots
ight)^n}$$

Now, using binomial expansion, we have:

$$=\lim_{x o 0}rac{x^n}{n\left(rac{x^2}{3!}-rac{x^4}{5!}+\cdots
ight)-rac{n(n-1)}{2}\cdot\left(rac{x^2}{3!}-rac{x^4}{5!}+\cdots
ight)^2\cdots}$$

 \therefore For n=2 limit exist.

24. Let
$$f(x)=x^2+px+3$$
 and $g(x)=x+q$, where $p,q\in\mathbb{R}$. If
$$F(x)=\lim_{n\to\infty}\frac{f(x)+x^ng(x)}{1+x^n} \text{is derivable at } x=1 \text{, then the value of } p^2+q^2 \text{ is }$$

Accepted Answers

Solution:

$$F(x) = \lim_{n o\infty}rac{f(x) + x^ng(x)}{1+x^n}$$

$$\Rightarrow F(x) = \left\{ egin{array}{ll} f(x)~; & 0 \leq x < 1 \ rac{f(1) + g(1)}{2}; & x = 1 \ g(x)~; & x > 1 \end{array}
ight.$$

$$\Rightarrow F(x) = \left\{egin{array}{ll} x^2 + px + 3 \ p + q + 5 \ \hline 2 \ x + q \ ; & x > 1 \end{array}
ight.$$
 Differentiating w.r.t x ,

$$\Rightarrow F'(x) = \begin{cases} 2x + p \; ; & 0 < x < 1 \\ 1 \; ; & x > 1 \end{cases}$$

As the function is derivable, L.H.D = R.H.D, $2+p=1 \Rightarrow p=-1$

 $\therefore F(x)$ is derivable, therefore continuous too.

Checking continuity at x = 1,

$$1 + p + 3 = 1 + q$$

$$\Rightarrow p+3=q$$

$$\Rightarrow -1+3=q$$

$$\Rightarrow a = 2$$

$$\Rightarrow q = 2$$

$$\therefore p^2 + q^2 = 5$$

25. The number of point(s) of non-differentiability for $f(x)=[e^x]+|x^2-3x+2|$ in (-1,3) is (where [.] denotes greatest integer function, $e^3=20.1$)

Accepted Answers

Solution:

Given: $f(x) = [e^x] + |x^2 - 3x + 2| \& x \in (-1,3)$ $\because e^x$ is increasing function $\Rightarrow e^x \in \left(\frac{1}{e}, e^3\right)$ for $x \in (-1,3)$ $\Rightarrow e^x \in (0.36, 20.1)$ $\Rightarrow [e^x]$ is not differentiable at 20 integral points. and $|x^2 - 3x + 2| = |(x - 2)(x - 1)|$ is non differentiale at x = 1, 2

Clearly, e^x is not integer at x = 1, 2 \therefore Total 22 points of non-differentiability.

26. If
$$f(x)=\left\{egin{array}{ll} a+\sin^{-1}(x+b),&x\geq 1\\ x,&x<1 \end{array}
ight.$$
 is differentiable function, then value of $a+b$ is

Accepted Answers

Solution:

$$f(x) = egin{cases} a + \sin^{-1}(x+b), & x \geq 1 \ x, & x < 1 \end{cases}$$
 $\Rightarrow f'(x) = egin{cases} rac{1}{\sqrt{1-(x+b)^2}}, & x > 1 \ 1, & x < 1 \end{cases}$

For f(x) to be continuous at x=1, $f\left(1^+\right)=f\left(1^-\right)=f(1)$ $\Rightarrow a+\sin^{-1}(1+b)=1\cdots(1)$

For differentiability at x=1 $f'\left(1^+\right)=f'\left(1^-\right)$ $\Rightarrow \frac{1}{\sqrt{1-(1+b)^2}}=1$ $\Rightarrow b=-1$

From equation (1), a = 1

$$\therefore a+b=0$$

27. If
$$f(x)=\tan^{-1}\frac{x}{1+\sqrt{(1-x^2)}}+\sin\biggl\{2\tan^{-1}\sqrt{\biggl(\frac{1-x}{1+x}\biggr)}\biggr\}, x\in(0,1),$$
 then the value of $f'\left(\frac{1}{2}\right)$ is

Accepted Answers

Solution:

Putting
$$x = \cos \theta$$

$$y = \tan^{-1}\left(\frac{\cos \theta}{1 + \sin \theta}\right) + \sin\left\{2\tan^{-1}\sqrt{\left(\frac{1 - \cos \theta}{1 + \cos \theta}\right)}\right\}$$

$$= \tan^{-1}\frac{\sin\left(\frac{\pi}{2} - \theta\right)}{1 + \cos\left(\frac{\pi}{2} - \theta\right)} + \sin\left(2\tan^{-1}\tan\left(\frac{\theta}{2}\right)\right)$$

$$\left(\because x \in (0, 1) \Rightarrow \theta \in \left(0, \frac{\pi}{2}\right) \Rightarrow \frac{\theta}{2} \in \left(0, \frac{\pi}{4}\right)\right)$$

$$= \tan^{-1}\frac{2\sin\left(\frac{\pi}{4} - \frac{\theta}{2}\right)\cos\left(\frac{\pi}{4} - \frac{\theta}{2}\right)}{2\cos^{2}\left(\frac{\pi}{4} - \frac{\theta}{2}\right)} + \sin\left(2 \cdot \frac{\theta}{2}\right)$$

$$= \tan^{-1}\tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) + \sin\theta$$

$$= \frac{\pi}{4} - \frac{\theta}{2} + \sqrt{1 - \cos^{2}\theta}$$

$$= \frac{\pi}{4} - \frac{\cos^{-1}x}{2} + \sqrt{1 - x^{2}}$$

$$\therefore \frac{dy}{dx} = \frac{1}{2\sqrt{(1 - x^{2})}} + \frac{-2x}{2\sqrt{(1 - x^{2})}}$$

$$= \frac{1 - 2x}{2\sqrt{(1 - x^{2})}}$$

$$f'\left(\frac{1}{2}\right) = 0$$

28. The normal at the point $P\left(2,\frac{1}{2}\right)$ on the curve xy=1 meets the curve again at Q. If m is the slope of the curve at Q, then the value of |m| is

Accepted Answers

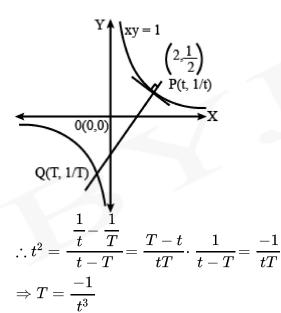
64 64.0 64.00

Solution:

We have
$$y = \frac{1}{x}$$

Slope of tangent,
$$\frac{dy}{dx} = \frac{-1}{x^2}$$

Slope of normal at P is t^2



Slope of curve at
$$Q$$
 is, $m=\dfrac{-1}{x^2}$

$$m=rac{-1}{T^2}{=}\left(rac{-1}{\left(rac{-1}{t^3}
ight)^2}
ight)=-t^6$$

Given that
$$t=2$$

$$m=-2^6=-64$$

Hence,
$$|m|=64$$
.

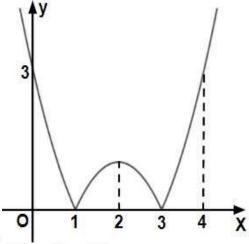
29. Let $f(x)=|x^2-4x+3|$ be a function defined on $x\in[0,4]$ and α,β,γ are the abscissas of the critical points of f(x). If m and M are the local and absolute maximum values of f(x) respectively, then the value of $\alpha^2+\beta^2+\gamma^2+m^2+M^2$ is

Accepted Answers

24 24.0 24.00

Solution:

$$f(x)=|x^2-4x+3|, \ \ x\in [0,4]$$



- ightarrow From the graph, critical points are (1,0),(2,1),(3,0) $lpha=1,\ \beta=2,\ \gamma=3$
- ightarrow Local maximum occurs at x=2
- \therefore Local maximum value, m = f(2) = 1
- ightarrow Absolute maximum value, M=f(0)=f(4)=3
- $\therefore lpha^2 + eta^2 + \gamma^2 + m^2 + M^2 = 24$

BYJU'S The Learning App

JEE Main Part Test 3

30. The minimum value of α for which the equation $\frac{4}{\sin x} + \frac{1}{1 - \sin x} = \alpha$ has at least one solution in $\left(0, \frac{\pi}{2}\right)$ is

Accepted Answers

Solution:

Let
$$f(x) = \frac{4}{\sin x} + \frac{1}{1 - \sin x}$$
 and $\sin x = t$

$$\therefore x \in \left(0, \frac{\pi}{2}\right) \Rightarrow 0 < t < 1$$

$$f(x) = \frac{4}{t} + \frac{1}{1 - t}$$

$$f'(x) = \frac{-4}{t^2} + \frac{1}{(1 - t)^2} = 0$$

$$\Rightarrow \frac{t^2 - 4(1 - t)^2}{t^2(1 - t)^2} = 0$$

$$\Rightarrow t = \frac{2}{3}$$

$$f_{\min} \text{ at } t = \frac{2}{3}$$

$$a_{\min} = f\left(\frac{2}{3}\right) = \frac{4}{2/3} + \frac{1}{1 - 2/3}$$

$$= 6 + 3$$

$$= 9$$