

Topic: EMI, AC and EM Waves

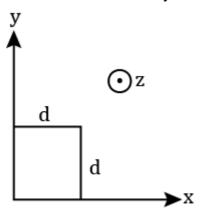
1. The figure shows a circuit that contains four identical resistors with resistance $R=2.0~\Omega$. Two identical inductors with inductance $L=2.0~\mathrm{mH}$ and an ideal battery with emf $E=9~\mathrm{V}$. The current(i) just after the switch 's' is closed will be:

- **A.** 9 A
- **B.** 3 A
- **c**. $_{2.25 \text{ A}}$
- D. 3.37 A

2. Match List I with List II.

List I	List II
	i. Radioactive decay of nucleus
a. Source of microwave frequency	ii. Magnetron
b. Source of infrared frequency	iii. Inner shell electrons
$\it c$. Source of Gamma Rays	iv. Vibration of atoms and molecules
d. Source of X-rays	v. LASER
	vi. RC circuit

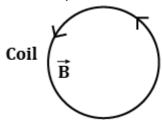
Choose the correct answer from the option given below:


A.
$$(a)$$
- (ii) , (b) - (iv) , (c) - (i) , (d) - (iii)

$$\textbf{B.} \quad (a)\text{-}(vi),\, (b)\text{-}(iv),\, (c)\text{-}(i),\, (d)\text{-}(v)$$

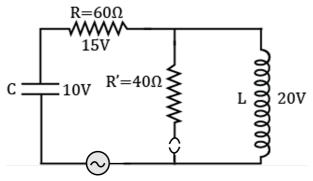
$$\textbf{C.} \quad (a)\text{-}(ii),\, (b)\text{-}(iv),\, (c)\text{-}(vi),\, (d)\text{-}(iii)$$

3. The magnetic field in a region is given by $\overrightarrow{B}=B_0\left(\frac{x}{a}\right)\hat{k}$. A sqaure loop of side d is placed with its edges along the x and y axes. The loop is moved with a constant velocity $\overrightarrow{v}=v_0\hat{i}$. The emf induced in the loop is:


- $\mathbf{A.} \quad \frac{B_0 v_o d^2}{2a}$
- $\mathbf{B.} \quad \frac{B_0 v_o d^2}{a}$
- $\mathbf{c.} \quad \frac{B_0 v_o d}{2a}$
- $\mathbf{D.} \quad \frac{B_0 v_0^2 d}{2a}$
- 4. Two identical antennas mounted on identical towers are separated from each other by a distance of $45~\rm km$. What should nearly be the minimum height of receiving antenna to receive the signals in line of sight? (Assume radius of earth is $6400~\rm km$)
 - **A.** 19.77 m
 - **B.** 79.1 m
 - **c**. 158.2 m
 - **D.** 39.55 m

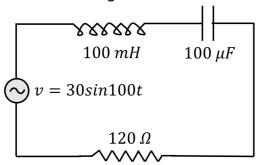
- 5. What happens to the inductive reactance and the current in a purely inductive circuit if the frequency is halved?
 - A. Both, including reactance and current will be doubled
 - B. Both, including reactance and current will be halved
 - C. Inductive reactance will be halved and current will be doubled
 - D. Inductive reactance will be doubled and current will be halved
- 6. The time taken for the magnetic energy to reach 25% of its maximum value, when a solenoid of resistance R and inductance L is connected to a battery, is -
 - **A.** $\frac{L}{R}$ ln 2
 - $\mathbf{B.} \quad \frac{L}{R} \ln 10$
 - C. Infinite
 - $\mathbf{D.} \quad \frac{L_{\ln 5}}{R}$
- 7. A planer loop of wire rotates in a uniform magnetic field. Initially, at t=0, the plane of the loop is perpendicular to the magnetic field. If it rotates with a period of $10~\rm s$ about an axis in its plane, then the magnitude of induced emf will be maximum and minimum, respectively at:
 - **A.** 2.5 s and 7.5 s
 - $\mathbf{B.} \quad 2.5 \mathrm{\ s \ and} \ 5.0 \mathrm{\ s}$
 - **C.** 5.0 s and 7.5 s
 - **D.** 5.0 s and 10.0 s

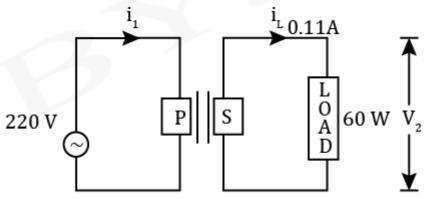
- 8. An inductor coil stores $64~\mathrm{J}$ of magnetic field energy and dissipates energy at the rate of $640~\mathrm{W}$ when a current of $8~\mathrm{A}$ is passed through it. If this coil is joined across an ideal battery, find the time constant of the circuit, in seconds.
 - **A.** 0.2
 - B. 0.4
 - **c**. 0.8
 - **D.** 0.80
- 9. A light beam is described by $E=800\,\sin\omega\left(t-\frac{x}{c}\right)$. An electron is allowed to move normal to the propagation of light beam with a speed of $3\times10^7~\mathrm{ms^{-1}}$. What is the maximum magnetic force exerted on the electron ?
 - **A.** $1.28 \times 10^{-18} \text{ N}$
 - **B.** $12.8 \times 10^{-18} N$
 - C. $12.8 \times 10^{-17} \text{ N}$
 - **D.** $1.28 \times 10^{-21} \text{ N}$
- 10. A coil is placed in a magnetic field \overrightarrow{B} as shown below:


Induced current

A current is induced in the coil because \overrightarrow{B} is

- A. outward and increasing with time
- B. outward and decreasing with time
- **C.** parallel to the plane of coil and increasing with time
- D. parallel to the plane of coil and decreasing with time


11. The angular frequency of alternating current in a LCR circuit is $100 \, \mathrm{rad/s}$. The components connected are shown in the figure. Find the value of inductance of the coil and capacity of condenser.


- **A.** $0.8~\mathrm{H}$ and $250~\mu\mathrm{F}$
- **B.** $0.8~\mathrm{H}$ and $150~\mu\mathrm{F}$
- **C.** $1.33~\mathrm{H}$ and $250~\mu\mathrm{F}$
- **D.** $1.33~\mathrm{H}$ and $150~\mu\mathrm{F}$
- 12. An alternating current is given by the equation, $i=i_1\sin\omega t+i_2\cos\omega t$. The RMS value of current will be :
 - **A.** $\frac{1}{2}(i_1^2+i_2^2)^{\frac{1}{2}}$
 - $\textbf{B.} \quad \frac{1}{\sqrt{2}}(i_1^2+i_2^2)^{\frac{1}{2}}$
 - C. $\frac{1}{\sqrt{2}}(i_1+i_2)^2$
 - $\textbf{D.} \quad \frac{1}{\sqrt{2}}(i_1+i_2)$

13. Find the peak current and the resonant frequency of the following circuit as shown in the figure.

- **A.** 0.2 A and 100 Hz
- **B.** 2 A and 50 Hz
- **C.** $_{2 \text{ A}}$ and $_{100 \text{ Hz}}$
- **D.** 0.2 A and 50 Hz
- 14. For the given circuit, comment on the type of transformer used.

- A. Step down transformer
- B. Auxilliary transformer
- C. Step up transformer
- D. Auto transformer

- 15. In a series LCR resonance circuit, if we change the resistance only, from a lower to higher value:
 - A. The resonance frequency will increase.
 - **B.** The quality factor will increase.
 - **C.** The quality factor and the resonance frequency will remain constant.
 - **D.** The bandwidth of resonance circuit will increase.
- 16. An AC source rated 220~V, 50~Hz is connected to a resistor. The time taken by the current to change from its maximum to the rms value is:
 - **A.** 0.25 ms
 - B. $_{25~\mathrm{ms}}$
 - C. $2.5 \mathrm{ms}$
 - D. $2.5 \mathrm{s}$

17. Match List I with list II

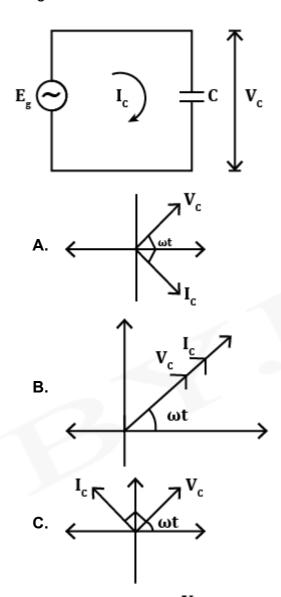
List-I	List- II
(a) Phase difference	
between current	
and voltage in a	(i) π/2; current leads voltage
purely resistive	
AC circuit	
(b) Phase difference between	
current and voltage in a	(ii) zero
pure inductive AC	(11) 2010
circuit	
(c) Phase difference	
between current	
and voltage in a	(iii) π/2; current lags voltage
pure capacitive	
AC circuit	
(d) Phase difference	
between current	(iv) $\tan^{-1}\left(\frac{X_C-X_L}{R}\right)$
and voltage in an	R =
LCR series circuit	

A.
$$(a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)$$

B.
$$(a) - (i), (b) - (iii), (c) - (iv), (d) - (ii)$$

C.
$$(a) - (ii), (b) - (iv), (c) - (iii), (d) - (i)$$

D.
$$(a) - (ii), (b) - (iii), (c) - (i), (d) - (iv)$$


- 18. In a series LCR circuit, the inductive reactance (X_L) is $10~\Omega$ and the capacitive reactance (X_C) is $4~\Omega$. The resistance (R) in the circuit is $6~\Omega$. Find the power factor of the circuit.
 - **A.** $\frac{1}{\sqrt{2}}$
 - $\mathbf{B.} \quad \frac{\sqrt{3}}{2}$
 - **C**. $\frac{1}{2}$
 - $\mathbf{D.} \quad \frac{1}{2\sqrt{2}}$

- 19. For a series LCR circuit with $R=100~\Omega,~L=0.5~\mathrm{mH}$ and $C=0.1~\mathrm{pF}$ connected across $220~\mathrm{V}-50~\mathrm{Hz}$ AC supply, the phase angle between current and supplied voltage and the nature of the circuit is :
 - **A.** 0° , resistive circuit
 - **B.** $~\approx 90^{\circ},~$ predominantly inductive circuit
 - $\textbf{C.} \quad \boldsymbol{0}^{\circ}$, resonance circuit
 - **D.** $~\approx 90^{\circ}$, predominantly capacitive circuit

20. In a circuit consisting of a capacitance and a generator with alternating emf $E_g=E_g\sin\omega t$, where V_C and I_C are the voltage and current. Correct phasor diagram for such circuit is :

- 21. In amplitude modulation, the message signal $V_m(t)=1\sin(2\pi\times 10^5t)$ volts and carrier signal $V_C(t)=20\sin(2\pi\times 10^7t)$ volts. The modulated signal now contains the message signal with lower side band and upper side band frequency. Therefore the bandwidth of modulated signal is α kHz. The value of α is :
 - A. $200 \, \mathrm{kHz}$
 - B. $50 \, \mathrm{kHz}$
 - c. $100 \, \mathrm{kHz}$
 - **D.** $0 \, \mathrm{kHz}$
- 22. A $10~\Omega$ resistance is connected across $220~\mathrm{V-}50~\mathrm{Hz}~AC$ supply. The time taken by the current to change from its maximum value to the RMS value is
 - **A.** 2.5 ms
 - **B.** 1.5 ms
 - $\textbf{C.} \quad 3.0 \text{ ms}$
 - D. $4.5 \mathrm{ms}$
- 23. If a message signal of frequency f_m is amplitude modulated with a carrier signal of frequency f_c and radiated through an antenna, the wavelength of the corresponding signal in air is:

[Given , \emph{c} = speed of electromagnetic wave in vacuum/air]

- A. $\frac{c}{f_c+f_m}$
- B. $\frac{c}{f_c-f_m}$
- C. $\frac{c}{f_m}$
- $\mathbf{D.} \quad \frac{c}{f_c}$

- 24. A signal of $0.1~\mathrm{kW}$ is transmitted in a cable. The attenuation of cable is $-5~\mathrm{dB}$ per km and cable length is $20~\mathrm{km}$. The power received at receiver is $10^{-x}~\mathrm{W}$. The value of x is . [Gain in $dB = 10\log_{10}(\frac{P_0}{P})$]
- 25. An audio signal $v_m=20\sin 2\pi (1500t)$ amplitude modulates a carrier $v_c=80\sin 2\pi (100,000t)$. The value of percent modulation is
- 26. Given below are two statements:

Statement I : A speech signal of $2~\mathrm{kHz}$ is used to modulate a carrier signal of $1~\mathrm{MHz}$. The bandwidth requirement for the signal is $4~\mathrm{kHz}$.

Statement II : The sideband frequencies are $1002~\mathrm{kHz}$ and $998~\mathrm{kHz}$.

In the light of the above statements, choose the correct answer from the options given below.

- A. Both statement I and statement II are false.
- B. Statement I is false, but statement II is true.
- C. Statement I is true, but statement II is false.
- **D.** Both statement I and statement II are true.
- 27. The maximum and minimum amplitude of an amplitude modulated wave is $16~{\rm V}$ and $8~{\rm V}$ respectively. The modulation index for this amplitude modulated wave is $x\times 10^{-2}$. The value of x is _____. (up to two significant figures)
- 28. If the highest frequency modulating a carrier is $5~\mathrm{kHz}$, then the number of AM broadcast stations accommodated in a $90~\mathrm{kHz}$ bandwidth are _____

- 29. A carrier signal $C(t)=25\sin(2.512\times 10^{10}t)$ is amplitude modulated by a message signal $m(t)=5\sin(1.57\times 10^8t)$ and transmitted through an antenna. What will be bandwidth of the modulated signal?
 - **A.** 1987.5 MHz
 - B. $2.01 \mathrm{GHz}$
 - c. $50 \,\mathrm{MHz}$
 - D. $8 \, \mathrm{GHz}$
- 30. In a plane electromagnetic wave, the directions of electric field and magnetic field are represented by \hat{k} and $2\hat{i}-2\hat{j}$, respectively. What is the unit vector along direction of propagation of the wave ?
 - $\textbf{A.} \quad \frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
 - **B.** $\frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$
 - C. $\frac{1}{\sqrt{5}}(\hat{i}+2\hat{j})$
 - $\mathbf{D.} \quad \frac{1}{\sqrt{5}} (2\hat{i} + \hat{j})$