

ELECTROMAGNETIC INDUCTION

MAGNETIC FLUX

- $\phi = \vec{B}.\vec{A} = BA \cos \theta$ for uniform \vec{B}
- $\phi = \int \vec{B} \cdot d\vec{A}$ for non uniform \vec{B} .

FARADAY'S LAWS OF ELECTROMAGNETIC INDUCTION

• Induced EMF $(\varepsilon) \propto$ Rate of change of magnetic flux

(dø)	
	dt	

LENZ'S LAWS

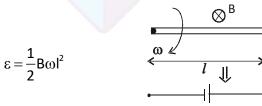
The direction of an induced emf is always such as to oppose the cause producing it.

• $(\epsilon) = -\left(\frac{d\phi}{dt}\right)$

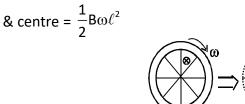
EMF induced in a straight conductor in uniform magnetic field:

 $\begin{aligned} \varepsilon &= \mathsf{BLv}\sin\theta\\ \mathsf{Where,}\\ \mathsf{B} &= \mathsf{flux}\,\mathsf{density}\\ \mathsf{L} &= \mathsf{length}\,\mathsf{of}\,\mathsf{the}\,\mathsf{conductor}\\ \mathsf{v} &= \mathsf{velocity}\,\mathsf{of}\,\mathsf{the}\,\mathsf{conductor}\\ \theta &= \mathsf{angle}\,\mathsf{between}\,\mathsf{direction}\,\mathsf{of}\,\mathsf{motion}\,\mathsf{of}\,\mathsf{conductor}\,\&\,\mathsf{B}\,. \end{aligned}$

EMF induced in a rod rotating perpendicular to magnetic field:



For a wheel rotating in a earth magnetic field effective emf induced between the periphery



COIL ROTATION IN MAGNETIC FIELD SUCH THAT AXIS OF ROTATION IS PERPENDICULAR TO THE MAGNETIC FIELD

Instantaneous induced emf.

- ϵ = BAN ω sin(ω t)
- $\varepsilon_0 = BAN\omega$
- $\varepsilon = \varepsilon_0 \sin(\omega t)$

SELF INDUCTION & SELF INDUCTANCE

Coefficient of self inductance L = $\frac{\phi_s}{i}$ or ϕ_s = Li

i = current in the circuit

 ϕ_s = magnetic flux linked with the circuit due to the current i.

L depends only on; (i) shape of the loop & (ii) medium

self induced emf $e_s = \frac{d\phi_s}{dt} = -\frac{d}{dt}(Li) = -L \frac{di}{dt}$ (if L is constant)

MUTUAL INDUCTION

Mutual inductance = M = $\frac{\phi_m}{I_p} = \frac{\text{flux linked with secondary}}{\text{current in the primary}}$

Mutually induced emf: $E_m = \frac{d\varphi_m}{dt} = -\frac{d}{dt}(MI) = -M \frac{dI}{dt}$ (if M is constant)

M depends on (1) geometry of loops (2) medium (3) orientation & distance loops.

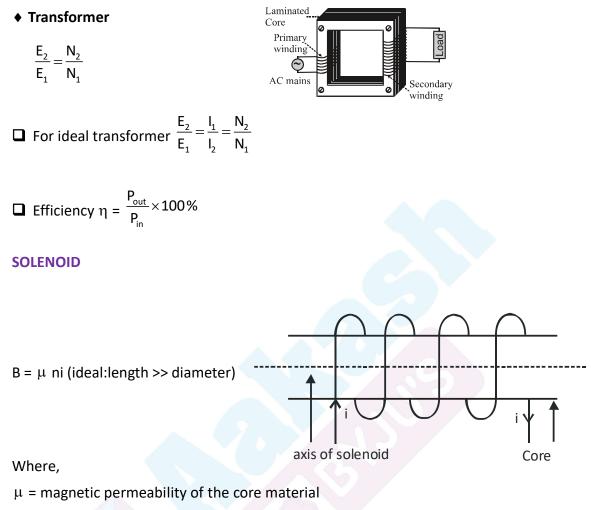
• If two coils of self inductance L_1 , and L_2 are wound over each other, the mutual inductance. M = $K_1 \sqrt{L_1 L_2}$ where K is called coupling constant.

- For two coils wound in same direction and connected in series. L = L₁ + L₂ + 2M
- For two coils wound in opposite direction and connected in series. L = $L_1 + L_2 2M$

• For two coils in parallel L =
$$\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$$

ELECTROMAGNETIC INDUCTION

TRANSFORMER



n = number of turns in the solenoid per unit length

i = current in the solenoid

Self inductance of a solenoid $L = \mu_0 n^2 A l$

Where, A = area of cross section of solenoid .

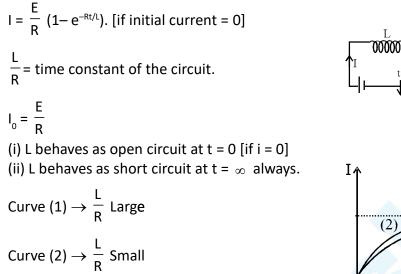
SUPER CONDUCTION LOOP IN MAGNETIC FIELD

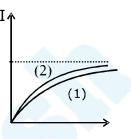
R = O ; ϵ = 0. Therefore ϕ_{total} = constant. Thus in a superconducting loop flux never changes. (or it opposes 100%)

(i) Energy stored in an inductor $W = \frac{1}{2} LI^2$

(ii) Energy of interaction of two loops $U = I_1 \phi_2 = I_2 \phi_1 = MI_1 I_2$ Where M is mutual inductance

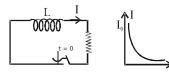
GROWTH OF A CURRENT IN AN L- R CIRCUIT





DECAY OF CURRENT

Initial current through the inductor = I_0 ; Current at any instant i = $I_0e^{-Rt/L}$.



ALTERNATIVE CURRENT AND EM WAVES

Average value

$$I_{av} = \frac{\int_{0}^{T} I dt}{\int_{0}^{T} dt} = \frac{1}{T} \int_{0}^{T} I dt$$
$$I_{rms} = \sqrt{\frac{\int_{0}^{T} I^{2} dt}{\int_{0}^{T} dt}}$$

RMS value

For sinusoidal voltage

 $V = V_0 \sin \omega t$,

$$V_{av} = \frac{2V_0}{\pi} \& V_{rms} = \frac{V_0}{\sqrt{2}}$$

• For sinusoidal current

 $I = I_0 \sin(\omega t + \phi),$

$$I_{av} = \frac{2I_0}{\pi} \& I_{rms} = \frac{I_0}{\sqrt{2}}$$

AC CIRCUITS



mm

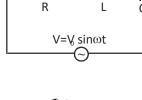
Impedance

$$Z = \sqrt{R^2 + X^2}$$

where X = reactance

Series LCR Circuit

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$



 $V = \sqrt{V_{R}^{2} + (V_{L} - V_{C})^{2}}$

• Power Factor = $\cos\phi$ = R/Z, At resonance : $X_L = X_C \Longrightarrow Z = R, V = V_R$

• LC Oscillation

$$q = q_0 \sin(\omega t + \theta),$$

$$I = I_0 \cos(\omega t + \theta) \qquad I_0 = q_0 \omega$$

Energy = $\frac{1}{2}LI^2 + \frac{q^2}{2C} = \frac{q_0^2}{2C} = \frac{1}{2}LI_0^2$ = constant

Comparison with SHM q \rightarrow x, I \rightarrow v, L \rightarrow m, C $\rightarrow \frac{1}{K}$

Comparison of Damped Mechanical & electrical systems (I) Series LCR circuit :

Compare with mechanical damped system equation

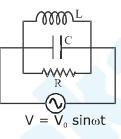
$$\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \frac{k}{m}\chi = \frac{F_0}{m}\cos\omega t$$

Where b = damping coefficient.

ALTERNATIVE CURRENT AND EM WAVES

Mechanical system	Electrical systems (series RLC)
Displacement(x)	Charge(q)
Driving force(F)	Driving voltage(V)
	Electromagnetic energy of moving Charge
Kinetic energy $\left(\frac{1}{2}mv^2\right)$	$\frac{1}{2}L\left(\frac{dq}{dt}\right)^2 = \frac{1}{2}Li^2$
Potential energy $\frac{1}{2}$ kx ²	Energy of static Charge $\frac{q^2}{2C}$
mass (m)	L
PowerP=Fv	Power P = VI
Damping (b)	Resistance (R)
Spring Constant	1/C

(II) Parallel LCR circuit :



$$I = I_{L} + I_{c} + I_{R} = \frac{\phi}{L} + \frac{d}{dt}C\left(\frac{d\phi}{dt}\right) + \frac{1}{R}\frac{d\phi}{dt} \Rightarrow \frac{d^{2}\phi}{dt^{2}} + \frac{1}{RC}\frac{d\phi}{dt} + \frac{1}{LC}\phi = \frac{V_{0}}{ZC}\sin\omega t$$

Displacement (X)	\Leftrightarrow	Flux linkage (þ)
Velocity $\left(\frac{dx}{dt}\right)$	\Leftrightarrow	Voltage $\left(\frac{d\phi}{dt}\right)$
Mass (m)	\Leftrightarrow	Capacitance (C)
Spring constant (k)	\Leftrightarrow	Reciprocal Industance (1/L)
Driving force (F)	\Leftrightarrow	Current (i)
Damping coefficient (b)	\Leftrightarrow	Reciprocal resistance (1/R)

Properties of EM Waves

• The electric and magnetic fields \vec{E} and \vec{B} are always perpendicular to the direction in which the wave is travelling. Thus the EM wave is a transverse wave.

• EM waves carry momentum and energy.

• EM wave travel through vacuum with the speed of light c, where $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = 3 \times 10^8 \text{ m/s}$

• The instantaneous magnitude of \vec{E} and \vec{B} in an EM wave are related by the expression $\frac{E}{B} = c$

• The cross product $\vec{E} \times \vec{B}$ always gives the direction in which the wave travels.

• **Poynting Vector** : The rate of flow of energy crossing a unit area by electromagnetic radiation is given by poynting vector \vec{S} where $\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$

• **Displacement current :** In a region of space in which there is a changing electric field, there is a displacement current defined as $I_d = \epsilon_0 \frac{d\phi_E}{dt}$ where ϵ_0 is the

permittivity of free space and $\phi_{\rm E} = \int \vec{E} . d\vec{S}$ is the electric flux.

Maxwell's Equations

$$\begin{split} \oint \vec{E}.d\vec{S} &= \frac{q}{\varepsilon_0} & [Gauss law for electricity] \\ \oint \vec{B}.d\vec{S} &= 0 & [Gauss law for magnetism] \\ \oint \vec{E}.d\vec{\ell} &= -\frac{d\phi_B}{dt} & [Faraday's law] \\ \oint \vec{B}.d\vec{\ell} &= \mu_0 \bigg[I_c + \epsilon_0 \frac{d\phi_E}{dt} \bigg] [Ampere's law with Maxwell's correction] \end{split}$$

KEY POINTS

• An alternating current of frequency 50Hz becomes zero, 100 times in one second because alternating current changes direction and becomes zero twice in a cycle.

• An alternating current cannot be used to conduct electrolysis because the ions due to their inertia, cannot follow the changing electric field.

• Average value of AC is always defined over half cycle because average value of AC over a complete cycle is always zero.

• AC current flows on the periphery of wire instead of flowing through total volume of wire. This is known as skin effect.