

CBSE Class 12 Chemistry Chapter 13 Amines Worksheet with Answer– Set 2

Q1. How many isomeric amines with the formula C_7H_9N contain a benzene ring?

- (a) Five
- (b) Four
- (c) Three
- (d) None of the above

Answer:

(a) Five isomeric amines with the formula C₇H₉N contain a benzene ring.

Q2. The oxidation of aniline with $K_2Cr_2O_7/H_2SO_4$ produces

- (a) Benzoic acid
- (b) p- Benzo quinone
- (c) p- Nitro phenol
- (d) None of the above

Answer:

(b) The oxidation of aniline with $K_2Cr_2O_7/H_2SO_4$ produces p- Benzo quinone.

Q3. The electrolytic reduction of nitro benzene in a strongly acidic medium produces

- (a) Aniline
- (b) Phenyl hydroxy amine
- (c) p- amino phenol
- (d) None of the above

Answer:

(c) The electrolytic reduction of nitro benzene in a strongly acidic medium produces p- amino phenol.

Q4. In the nitration of benzene with concentrated nitric acid and concentrated sulphuric acid, the electrophile is

- (a) NO_{2}^{+}
- (b) NO₂⁻
- $(C) NO_2$
- (d) None of the above

Answer:

(a) In the nitration of benzene with concentrated nitric acid and concentrated sulphuric acid, the electrophile is NO_2^{+} .

Q5. An organic amino compound reacts with aqueous nitrous acid at low temperatures to produce an oily nitrosamine. The compound is

(a) (C₂H₅)₃N

(b) $(C_2H_5)_2NH$

(c) $C_2H_5NH_2$

(d) None of the above

Answer:

(b) $(C_2H_5)_2NH$ reacts with aqueous nitrous acid at low temperatures to produce an oily nitrosamine.

Q6. Write the IUPAC and common name of the following compound.

Answer:

The IUPAC name of the compound mentioned above is 2- Phenyl Ethanamine, while its common name is β - Phenyl Ethanamine or 2- Phenyl Aminoethane.

Q7. Draw the structure of m- toluidine.

Answer:

The structure of m- toluidine is given below.

 CH_3 NH.

Q8. Identify A, B and C in the reaction mentioned below.

$$CH_3Br \xrightarrow{KCN} A \xrightarrow{LiAlH_4} B \xrightarrow{HNO_2} C$$

Answer:

Here, A = Methyl cyanide, B = Ethyl amine C = Ethyl alcohol.

 $\begin{array}{c} \mathrm{CH}_{3}\mathrm{Br} \xrightarrow{\mathrm{KCN}} \mathrm{CH}_{3}\mathrm{CN} \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{NH}_{2} \xrightarrow{\mathrm{HNO}_{2}} \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{OH} \\ (A) \qquad (B) \qquad (C) \end{array}$

Q9. Convert nitrobenzene to aniline.

Answer:

We can convert nitrobenzene to aniline by reacting it with iron in the presence of hydrochloric acid, followed by the reaction with sodium hydroxide.

Q10. Why does methyl amine have a lower boiling point than methanol?

Answer:

Methyl amine is polar and can form intermolecular hydrogen bonds. However, its tendency to form intermolecular hydrogen bonds is less than that of methanol (CH_3OH), which has a highly electronegative oxygen atom. As a result, CH_3NH_2 has a lower boiling point than CH_3OH .

Q11. Why is methyl amine a more substantial base than ammonia? **Answer:**

Methyl amine is a more significant base than ammonia because the alkyl group in methyl amine has a + I inductive effect and is electron-releasing in nature. As a result, its electron releasing tendency becomes more. Thus, methyl amine is a more significant base than ammonia.

Q12. Why does aniline dissolve in an aqueous hydrochloric acid solution?

Answer:

Aniline dissolves in an aqueous hydrochloric acid solution is due to the formation of the water-soluble salts.

 $C_6H_5NH_2 + HCI \rightarrow C_6H_5NH_3 + CI - (Anilinium Chloride)$

Q13. Why is it difficult to prepare pure amines by the ammonolysis of alkyl halides?

Answer:

It is difficult to prepare pure amines by the ammonolysis of alkyl halides because the ammonolysis of alkyl halides forms a mixture of primary, secondary and tertiary amines. $NH_3 + RX \rightarrow R-NH_2 + RX \rightarrow R_2-NH + RX \rightarrow R_3-N + RX \rightarrow R_4-N^+X^-$

It is difficult to separate primary, secondary and tertiary amines. Thus, it is challenging to prepare pure amines by the ammonolysis of alkyl halides.

Q14. Convert toluene to p- lodotoluene.

Answer:

We can convert toluene to p- lodotoluene in four steps.

Step 1: Toluene to p- nitro toluene: Foremost, we will react toluene with the nitric acid in the presence of the sulphuric acid.

Step 2: p- nitro toluene to p- toluidine: We will reduce p- nitro toluene to p- toluidine by the reducing agent Sn metal in the presence of hydrochloric acid.

Step 3: p- toluidine to Toluene diazonium chloride: We will react p- toluidine with the sodium nitrite and hydrochloric acid at $< 0^{\circ}$ C leading to the formation of toluene diazonium chloride.

Step 4: Toluene diazonium chloride to p- lodotoluene: At last, we will react toluene diazonium chloride with potassium iodide leading to the formation of resulting p- lodotoluene.

Q15. What is Hinsberg reagent?

Answer:

The Hinsberg reaction is a test for detecting primary, secondary and tertiary amines. In this test, the amine is shaken well with the Hinsberg reagent in the presence of aqueous alkali.

- A primary amine will form a water-soluble sulfonamide salt. Acidification of sulfonamide salt precipitates the sulfonamide of the primary amine.
- A secondary amine will form an insoluble sulfonamide salt.
- A tertiary amine will not react with the benzene sulfonyl chloride and will remain insoluble. After adding dilute acid, it will convert into a water-soluble ammonium salt.

Q16. Draw the structure, IUPAC names, and indicate primary, secondary and tertiary to the five isomeric amines with the formula C_7H_9N containing a benzene ring.

Answer:

The five isomeric amines with the formula C_7H_9N containing a benzene ring are mentioned below.

C ₇ H ₉ N				
S. No.	Structure	IUPAC	Туре	
1.	CH3	2- Methyl Benzenamine or 2- Methyl amino benzene.	1°	
2.	CH3	3- Methyl Benzenamine or 3- Methyl amino benzene.	1°	

3.	NH2 CH3	4- Methyl Benzenamine or 4- Methyl amino benzene.	1 °
4.	NHCH ₃	N- Methyl Benzenamine or N- Methyl amino benzene.	2°
5.	CH ₂ NH ₂	Phenyl amino ethane.	1°

Q17. An aromatic compound A on treatment with aqueous ammonia and heating forms compound B, which on heating with Br and KOH forms a compound C of molecular formula C_6H_7N . Write the structures and IUPAC names of compounds A, B and C.

Answer:

(i) Since the compound C of molecular formula C_6H_7N is formed from B on treatment with bromine and KOH (Hoffmann bromamide reaction). Therefore, compound B must be an amide and C must be an amine. The only aromatic amine having the molecular formula C_6H_7N is $C_6H_5NH_2$ (aniline). (ii) Since C is aniline, the amide from which is formed must be benzamide ($C_6H_5CONH_2$). $C_6H_5CONH_2 + Br_2 + KOH \rightarrow C_6H_5NH_2$ Thus, B is benzamide.

(iii) Since B is formed from A with aqueous ammonia and heating. Therefore, compound 'A' must be benzoic acid.

 $C_6H_5COOH + Aq \ NH_3 \rightarrow C_6H_5CONH_2$

Thus, $A = C_6H_5COOH$ (Benzoic Acid), $B = C_6H_5CONH_2$ (Benzamide), $C = C_6H_5NH_2$ (Aniline).

Q18. Write the chemical equation for the following reactions.

(a) The reaction of ethanolic NH_3 with C_2H_5CI .

(b) Ammonolysis of benzyl chloride and amine reaction formed with two moles of CH₃Cl.

Answer:

The chemical equations are mentioned below.

(a) The reaction of ethanolic NH_3 with C_2H_5CI .

(b) Ammonolysis of benzyl chloride and amine reaction formed with two moles of CH₃Cl.

 $\begin{array}{cccc} \mathrm{C_6H_5CH_2Cl} & \xrightarrow{\mathrm{NH}_3} & \mathrm{C_6H_5CH_2NH_2} & \xrightarrow{2\ \mathrm{CH_3Cl}} & \mathrm{C_6H_5-CH_2-N-CH_3} \\ & & & & \\ \mathrm{Benzyl\ chloride} & & & & & \\ \end{array} \\ \end{array}$

Q19. Complete the following reactions.

(a)

$$C_{\theta}H_{\delta}N_{2}Cl + H_{3}PO_{2} + H_{2}O \longrightarrow$$
(b)

$$CH_{3}CH_{2}NH_{2} + CHCl_{3} + alc. KOH \longrightarrow$$

(c)
$$C_6H_5N_2Cl \xrightarrow{H_2O}_{room \ temp.}$$

(d) $C_6H_5NH_2 + HCl(aq) \longrightarrow$

Answer:

(a)

$$C_{6}H_{5}N_{2}Cl + H_{3}PO_{2} + H_{2}O \longrightarrow C_{6}H_{6} + N_{2} + H_{3}PO_{3} + HCl$$
Benzene

$$CH_{3}CH_{2}NH_{2} + CHCl_{3} + 3KOH \xrightarrow{Warm} CH_{3}CH_{2}NC$$
Ethyl isocyanide + 3 KCl + 3 H₂O

- **Q20.** How will you convert? (a) Propionamide to Ethyl amine?
- (b) Aniline to Phenol
- (c) Aniline to Acetanilide.

Answer:

We can convert the following as mentioned below.

(a) **Propionamide to Ethyl amine:** We can convert propionamide to ethyl amine by the Hoffmann bromamide reaction, i.e. reacting it with bromine in the presence of the alcoholic potassium hydroxide.

CH CH CONH	Br_2,KOH		
01130112001112	Hoffmann bromamide		
Propionamide	reaction		

reaction Ethylamine

CH₃CH₂NH₂

(b) Aniline to Phenol: We can convert aniline to phenol by reacting it with the nitrous acid followed by hydrolysis.

(c) Aniline to Acetanilide: We can convert aniline to acetanilide by reacting it with acetyl chloride in the presence of the pyridine.

She Learning App