

Chemistry Worksheet on Chapter 3 Electrochemistry -Set 1

Q-1: The standard reduction potentials of three metallic cations, A, B, and C, are +0.65, -2.49, and -1.18 V, respectively. The order of the corresponding metal's reducing power is

- a) B>C>A
- b) A>C>B
- c) C>B>A
- d) C>A>B
- Q-2: The reaction

 $1_2' H_2(g) + AgCl(s) \rightarrow H^+(aq) + Cl^-(aq) + Ag(s)$

- occurs in the galvanic cell
- a) Ag/AgCl(s)|KCl(soln)|AgNO₃|Ag
- b) Pt/H₂(g)|KCI(soln)|AgCI(s)\Ag
- c) Pt|H₂(g)|HCl(soln)|AgCl(s)|Ag
- d) Pt|H₂(g)|HCl(soln)|AgNO₃(soln)|Ag

Q-3: Pure water does not conduct electricity because

- a) The melting point is low.
- b) Is easily broken down
- c) Is almost completely unionised
- d) Is neutral

Q-4: Calculate the charge required to oxidise one mole of Mn_3O_4 into MnO_4^{2-} in the presence of an alkaline medium.

Q-5: The amount of substance liberated at an electrode is not directly proportional to:

- a) Time
- b) Current
- c) Electrochemical equivalent
- d) Conductivity

Q-6: In a cell, $Zn(s)|Zn^{2+}||$ H⁺|H₂(Pt); adding H₂SO₄ to the cathode compartment will result in

- a) Decrease E_{cell}
- b) Increase $\mathsf{E}_{\mathsf{cell}}$

https://byjus.com

- c) Adjust the equilibrium to the left
- d) Adjust the equilibrium to the right

Q-7: The E^0 values for the two reduction electrode processes are as follows:

- a) Ce⁴⁺/Ce³⁺ = 1.61 V
- b) Co²⁺/Co= -0.28V

Calculate the cell potential and ΔG° for the cell reaction.

Q-8: Define the following:

- a) Strong Electrolyte
- b) Kohlraushís law
- c) Molar conductivity

Q-9: The following are the standard reduction potentials for single electrodes at 298 K:

Electrode	Electrode potential (Volt)
Mg ²⁺ /Mg	-2.34
Pb ²⁺ /Pb	-0.1262
Cr ²⁺ /Cr	-0.913

From this we can infer that

- a) Pb can reduce both Mg²⁺ and Cr²⁺
- b) Cr can reduce both Mg²⁺ and Pb²⁺
- c) Mg can reduce both Pb^{2+.} and Cr²⁺
- d) Mg can reduce both Pb²⁺ but not Cr²⁺

Q-10: Given that $E^{0}(Fe^{3+}, Fe) = -0.4 \text{ V}$ and $E^{0}(Fe^{2+}, Fe) = -0.44 \text{ V}$, the value of $E^{0}(Fe^{3+}, Fe^{2+})$ is

a) 0.76 V

- b) -0.40 V
- c) -0.76 V
- d) 0.40 V

Q-11: The Nernst equation for the reaction, $A^{2+} + 2e^- \rightarrow B$ in terms of the free energy change is

https://byjus.com

- a) ΔG=ΔG°+ 2.303RT log([B]/[A])
- b) ΔG=ΔG°- 2.303RT log([B]/[A])
- c) -ΔG=-ΔG°+ 2.303RT log([B]/[A])
- d) ΔG=-ΔG°+ 2.303RT log([B]/[A])

Q-12: The standard Gibbs free energy change for the reaction shown below is -2.7kJ/mol

 $Sn(s) + Pb^{2+} \rightarrow Sn^{2+} + Pb(s)$

Given that E⁰(Pb²⁺/Pb) is -0.126 V the value of E⁰(Sn²⁺/Sn) in V is _____(upto two decimal places)

Q-13: A column of 0.05M NaOH solution with a diameter of 1 cm and a length of 50 cm has an electrical resistance of 5.55×10^3 ohm. Determine the resistivity, conductivity, and molar conductivity.

Q-14: Why is it not possible to measure the potential of a single electrode?

Q-15: Explain the distinction between primary and secondary batteries.

Q-16: For the following reaction, $2MnO_4^{-+} 5H_2C_2O_4 + 6H^+ \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$

 $E^{0}(MnO_{4}^{-}/Mn^{2+})$ = +1.51 V and $E^{0}(CO_{2}/H_{2}C_{2}O_{4})$ = -0.49 V. Calculate the equilibrium constant at 298 K.

Q-17: The electrical conductivity of a metal

- a) Increases with increasing temperature
- b) Decreases with increasing temperature
- c) Is independent of temperature
- d) Shows oscillatory behaviour with temperature

Q-18: The mean ionic activity coefficient of 0.001 molal $ZnSO_4(aq)$ at 298 K according to the Debye-Huckel limiting law is(Debye Huckel constant is 0.509 molal^{-1/2})

Q-19: When an Al-NaCl solution is electrolyzed, how does the pH change?

Q-20: The H_2 -O₂ fuel cell was used in the Apollo space programmes.

- (a) Explain why fuel cells are preferred in space missions.
- (b) Discuss the values that influenced the decision to use fuel cells.
- (c) Can fuel cells be used in automobiles?
- (d) How can we increase efficiency of fuel cells ?

https://byjus.com