

Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

Chemistry JEE Solutions 2022

Chemistry

- 1. Which of the following has least spin only magnetic moment.
 - (1) Fe⁺³ (2) Fe⁺²
 - (3) Cu⁺² (4) Ni⁺²
- Sol. Answer (3)

Electronic configurations are,

 $Fe^{+3} = [Ar] 3d^5$ (5 unpaired electrons)

 $Fe^{+2} = [Ar] 3d^{6} (4 \text{ unpaired electrons})$

- $Cu^{+2} = [Ar] 3d^9$ (1 unpaired electrons)
- $Ni^{+2} = [Ar] 3d^8$ (2 unpaired electrons)
- : least spin only magnetic moment is of Cu⁺².

Sol. Answer (1)

NaH is a very strong base and will undergo acid base reaction very quickly

3. Dettol has two components, A has $6\pi e^{-s}$. What is B

(1) Terpineol (2) Bithionol

(3) Chloroxylenol (4) none of these

2nd order

1/2 order

5. $t_{1/2}$ of a reaction and pressure of reactant is given. Find the order of reaction

P_R^0	t _{1/2}	
10 atm	5 min	
20 atm	10 min	
(1) 1 st orde	(2)	
(3) zero order		(4)

Sol. Answer (3)

Since, $t_{1/2}$ of reaction is directly proportional to the initial pressure of the reactant. Hence, reaction will be zero order.

For zero order

$$t_{_{1/2}} \alpha P_{_{0}}$$

6.	Assertion: from a mixture of benzoic acid and naphthalene, benzoic acid can be separated using benzene.	9.	If electron, proton, neutron and alpha particle have same value of kinetic energy, then what is the correct order of wavelength according to		
	Reason: Benzoic acid is soluble in hot water.		De-Broglie		
Sol.	Answer (Assertion is false, Reason is true)		(1) $\lambda_p = \lambda_n = \lambda_e = \lambda$	α	
	Assertion: Benzoic acid is soluble in alcohol, ether and benzene.		(2) $\lambda_{\alpha} < \lambda_{n} < \lambda_{p} < \lambda$	e	
	a mixture of benzoic acid and naphthalene		$(3) \lambda_{\rm p} < \lambda_{\rm e} < \lambda_{\rm \alpha} < \lambda$	'n	
c k E t	both are soluble. (like dissolves like concept)		(4) $\lambda_{\alpha} < \lambda_{p} < \lambda_{\alpha} < \lambda$	'n	
	∴ Assertion is false	Sol.	Answer (2)		
	Benzoic acid is poorly soluble in water at room temperature and more soluble in hot water. Hence reason a true.		Since, $\lambda \propto \frac{1}{\sqrt{mE}}$		
7. Co ma (1) (2)	Correct order of electron gain enthalpy in		Kinetic energy is same for all the particle $(mass) > (mass) > (mass)$		
	magnitude is,		$(11ass)_{x} > (11ass)_{n} > (11ass)_{p} > (11ass)_{e}$		
	(1) F > Cl > Te > Po		Hence order of de-Broglie wavelength is		
	(2) CI > F > Ie > Po		$\lambda_{\alpha} < \lambda_{n} < \lambda_{p} < \lambda_{e}$		
	(3) PO > IO > IO > F	10.	Which of the following	ng is/ai	re correct
ടപ	(4) $CI > Ie > PO > F$		S-I : BOD of pollute	d wate	r may be 17 ppm
501.	AH of aroun-17 elements		S-II: BOD represen	it the a degrada	amount of oxygen to able and non-
			biodegradable subs	tances	
	G > F > D > I		(1) $S-1$ is correct	(2)	S-1 is correct
			S – 2 is correct		S – 2 is not correct
	S > Se > Te > Po > O		(3) $S-1$ is not correct	ect (4)	S - 1 is not correct
	Cl > F > Te > Po	Sol	Answer (2)		
	Generally as the size increase. $ \Delta H $	Con.	BOD is the amou	nt of	oxygen required by
	decreases i.e. option (2) is correct answer.	\mathbf{S}	bacteria to breakdown organic matter prese		ganic matter present
8.	Arrange the following species in decreasing		in a certain volume of a sample of water.		
	order to their standard reduction potential value		more than it	nidled water may be 17 ppm of	
	2. F_2/F^-				
	3. Na ⁺ /Na		.: S-1 is correct and	S-2 is	incorrect
	4. LI7LI 5. l ₂ /l ⁻	11.	Match the following	correc	tly
	 (1) 2 > 1 > 5 > 3 > 4 (2) 5 > 4 > 3 > 1 > 1 		(i) Zymase	(A)	Stomach
	(3) 2 > 1 > 4 > 5 > 3		(ii) Urease	(B)	Yeast
	(4) 5 > 1 > 2 > 4 > 3		(iii) Diastage	(C)	Malt
Sol.	Answer (1)			(-)	Coveheen
	Order of oxidising power of halogens is		(IV) Pepsin	(D)	Soyabean
	$F_2 > CI_2 > Br_2 > I_2$		(i) – B		(i) – B
	$\therefore E^{0}_{red} of F_{2} > Cl_{2} > l_{2}$		(1) $(ii) - D$	(2)	(ii) – A
	Order of reducing power of alkali metal is Li > Na		(iiv) – A		(iiv) – D
	\therefore of Li > Na or E^0_{red} of Na > Li		(i) – A		(i) – D
	\therefore The decreasing order of $E^{\scriptscriptstyle 0}_{\scriptscriptstyle red}$ is		(3) (ii) – B	(4)	(ii) – C
	$F_2 > CI_2 > I_2 > Na > Li$ i.e. 2 > 1 > 5 > 3 > 4		(III) – C (iv) – D		(III)—В (iv)—А
					1187 7 1

Sol. Answer (1)

 \Rightarrow Higher is the CFSE (crystal field splitting energy) value lower is the wavelength of the light absorbed .

Higher CFSE \Rightarrow strong field ligands

- \therefore option (1) is the correct answer.
- 17. Statement 1: In Electrolytic refining of copper blister, copper gives precious metal.

Statement 2: In electrolysis of copper blister, anode is made of copper.

- (1) Statement 1 and 2 both are correct
- (2) Statement is correct but statement 2 is incorrect
- (3) Statement 1 is incorrect but statement 2 is correct
- (4) Statement 1 and 2 both are incorrect
- Sol. Answer (1)

In electrolytic refining of blister Cu, precious metals like Au, Ag & Pt are deposited as anode mud.

So, statement 1 is true.

In electrolytic refining of Cu, anode is made of impure Cu and cathode is made of pure Cu

So, statement 2 is correct

- \therefore Option (1) is correct answer
- Heat of combustion for benzene and acetylene are -3900 and -642 joule. Then calculate heat of reaction (per mole) for following reaction

 $3C_2H_2 \longrightarrow C_6H_6$

(1) -658 J Mol⁻¹ (2) +658 J Mol⁻¹

Sol. Answer (2)

 $\begin{array}{rcl} C_6 H_6 & + & \displaystyle \frac{15}{2} O_2 & \displaystyle \stackrel{(\Delta H_C)_B}{\longrightarrow} & 6 CO_2 & + & 3 H_2 O \\ \\ C_2 H_2 & + & \displaystyle \frac{5}{2} O_2 & \displaystyle \stackrel{(\Delta H_C)_A}{\longrightarrow} & 2 CO_2 & + & H_2 O \end{array}$

 $3C_{2}H_{2} \xrightarrow{\Delta H_{R}} C_{2}H_{6}$ $\Delta H_{R} = 3(\Delta H_{C})_{Acetylene} - (\Delta H_{C})_{Benzene}$ = 3(-642) - (-3900)= -1926 + 3900

- = 1974 J for 3 mole
- $\therefore \Delta H_R$ for 1 mole = 658 J / mole
- 19. Pb(NO₃)₂ on heating gives A + PbO + O₂ A-dimerizes to give B. How many bridged oxygen atoms are present in B ?
 - (1) 0 (2) 1
 - (3) 2 (4) 3
- Sol. Answer (1)

$$Pb(NO_3)_2 \xrightarrow{\Delta} PbO + 2NO_2 + \frac{1}{2}O_2 \dots (A)$$

 \therefore Bridged oxygen atoms is 0.

- 20. The threshold frequency for a metal is 1.3×10^5 Hz. Then, minimum energy required to eject the electron from metal surface is $[h = 6.62 \times 10^{-34} \text{ JS}]$
 - (1) 8.6×10^{-19} J (2) 7.8×10^{-16} J (3) 2.3×10^{-19} J (4) 6.4×10^{-19} J
- Sol. Answer (1)
 - :. Minimum energy

Required to eject the electron

 $= 6.62 \times 10^{-34} \times 1.3 \times 10^{15}$

 $= 8.606 \times 10^{-19}$

- \therefore option (1) is correct answer
- 21. The solubility product (K_{SP}) of Bi₂S₃ is 1.08 × 10⁻⁷³ at a certain temperature. The molar solubility of the salt at this temperature is 1×10^{-x} M. The value of x is ?
- Sol. Answer (15)

$$\mathsf{Bi}_2\mathsf{S}_3 \ \longrightarrow \ 2\mathsf{Bi}_{2\mathsf{S}}^{+\mathsf{3}} \ + \ 3\mathsf{S}_{3\mathsf{S}}^{\mathsf{2}-}$$

Where s = solubility of Bi_2S_3

$$\mathsf{K}_{\mathsf{SP}} = \left[\mathsf{B}\mathsf{i}^{+3}\right]^2 \left[\mathsf{S}^{2-}\right]^3$$

 $K_{SP} = (2s)^{2} (3s)^{3}$ 1.08 × 10⁻⁷³ = 4 × 27s⁵ s⁵ = 1×10⁻⁷⁵ s = 1×10⁻¹⁵

- \therefore The value of x = 15
- 22. Which of the following has net dipole moment non-zero.

BeF₂, NH₃, H₂O, CCl₄, HCl

Sol. Answer (NH₃, H₂O, HCl)

23. $T_{1/2}$ of the reaction is 340 sec. If the initial pressure of reactant is 55.8 kPa and $t_{1/2}$ of the reaction is 170 sec. If the initial pressure of reactant is 27.8 kPa.

Determine the order of the reaction

Sol. Answer (0)

 $(P_0)_1 = 55.8 \text{ kPa}$ $t_{1/2} = 340 \text{ sec}$

 $(P_0)_2 = 27.8 \text{ kPa}$ $t_{1/2} = 170 \text{ sec}$

 \therefore t_{1/2} \propto initial pressure of reactant

i.e $t_{1/2} \propto$ initial concentration of reactant

- \therefore Order of reaction is zero order.
- 24. During electrolysis process of FeSO₄, 0.374 g of Fe is deposited on cathode, when 1.5 A current is passed through the solution for 'x' minutes.

Then the value of x is

[Assume current efficiency as 100% and molar mass of Fe is 56 g/mol]

Sol. Answer (14.32)

No of equivalents of Fe deposited = No. of faradays of charge passed

∴ No. of faradays = $\frac{0.374}{(56/2)} = \frac{0.748}{56}$ f No. of faradays = $\frac{i \times t}{96500}$ $\frac{0.748}{56} = \frac{1.5 \times t}{96500}$ $\Rightarrow t = 859.31 \text{ sec}$ or 14.32 min

Value of x = 14.32 min

25. In an organic compound containing protein, amount of protein is 0.3%. Then minimum molecular weight of organic compound (in g/ mole) is

[m.wt. of protein = 75]

Sol. Answer (25000)

For min. molecular weight of organic compound, 1 molecule of protein must be present

... Min molecular weight of organic compound 75×100

= 25000 g / mole

0.3

26. Nitrogen gas is filled in a rigid container. At 6:00AM, the pressure is 30 atm at 27°C, and at 3:00 PM, pressure because 'p' atm at 45°C.

Find the value of 'p'

[Round off to the nearest integer]

Sol. Answer (32)

Since the container is rigid so, V and n remains constant

$$\therefore \quad \frac{\mathsf{P}_1}{\mathsf{P}_2} = \frac{\mathsf{T}_1}{\mathsf{T}_2}$$

$$\Rightarrow \frac{30}{P_2} = \frac{300}{318}$$

 \Rightarrow P₂ = 31.8 atm

 \therefore Value of P = 31.8 atm

Rounded off to nearest integer = 32 atm