

# Coordinate Bond Chemistry Questions with Solutions

Q-1: Which of the following molecules does not have coordinate bonds?

- a) CH<sub>3</sub>-NC
- b) CO
- c) O<sub>3</sub>
- d) CO<sub>3</sub><sup>2-</sup>

### Answer: d) CO<sub>3</sub><sup>2-</sup>

Q-2: Which types of bonds are present in N<sub>2</sub>O<sub>5</sub>?

- a) only coordinate
- b) only ionic
- c) coordinate and ionic
- d) covalent and coordinate

Answer: d) covalent and coordinate

Q-3: Which of the following occurs during the formation of a coordinate bond?

- a) Electron transfer
- b) Electron donation
- c) Electron sharing
- d) equal electron transfer between bonded atoms

Answer: b) Electron donation

Explanation: When a donor atom donates its pair of electrons to the acceptor atom, a coordinate bond is formed. Electron donation occurs as a result.

Q-4: When NH<sub>3</sub> and BF<sub>3</sub> form a covalent coordinate bond, electron donation occurs in

- a) 2p-orbital of N-atom
- b) 2p-orbital of B-atom
- c) 1s-orbital of H-atom
- d) 2p-orbital of F-atom

Answer: b) 2p-orbital of B-atom

Explanation: Boron has an empty 2p-orbital, while nitrogen has a single electron pair. Nitrogen donates its pair of electrons to the empty 2p orbital of boron.



Q-5: Coordinate bond is also known as

- a) Native bond
- b) Dative bond
- c) Polar covalent bond
- d) Electrovalent bond

Answer: b) Dative bond

**Q-6:** How is the pi- coordinate bond formed? Explain with an example

**Answer:** Pi-coordinate bonds are typically formed in compounds with back bonding. It is formed by electrons being donated from the donor atom to the atom that requires electrons. As an example: Boron has an empty p-orbital in BF<sub>3</sub>, while fluorine has a lone pair of electrons. As a result, fluorine donates its lone pair of electrons to the Boron atom, thereby satisfying its deficiency.

ming AP **Q-7:** Mention the type of  $\pi$ -coordinate bond in each of the following:

1) N(SiH<sub>3</sub>)<sub>3</sub> 2) BF<sub>3</sub> 3)  $BCI_3$ 4) H<sub>3</sub>Si-N=C=S 5) OCl<sub>2</sub>

#### Answer:

| Compound                          | Direction of donation | Type of $\pmb{\pi}$ -coordinate bond |
|-----------------------------------|-----------------------|--------------------------------------|
| N(SiH <sub>3</sub> ) <sub>3</sub> | 2p of N to 3d of Si   | 2p <b>π</b> -3d <b>π</b>             |
| BF <sub>3</sub>                   | 2p of F to 2p of B    | 2р <b>л</b> -2р <b>л</b>             |
| BCl <sub>3</sub>                  | 3p of CI to 2p of B   | 2р <b>л</b> -3р <b>л</b>             |
| H₃Si-N=C=S                        | 2p of N to 3d of Si   | 2p <b>π</b> -3d <b>π</b>             |
| OCl <sub>2</sub>                  | 2p of O to 3d of Cl   | 2p <b>π</b> -3d <b>π</b>             |

Q-8: How many dative bonds do sodium isocyanide and sodium cyanide have?

Answer: The formula for sodium isocyanide is NaNC, which has only one dative bond. Sodium cyanide, on the other hand, is NaCN, which has no dative bonds.



**Q-9:** Is it possible for a coordinate bond to be a sigma bond?

**Answer:** A coordinate bond is similar to a regular covalent bond, except that both electrons in the bond come from the same atom. A single coordinate bond is, therefore, a sigma bond..

#### Q-10: Match the column I with column II

| Column I                          | Column II              |  |
|-----------------------------------|------------------------|--|
| a) $H^+ + H_2O$                   | 1) Covalent bond       |  |
| b) l + l                          | 2) Coordinate bond     |  |
| c) Na + ½ Cl <sub>2</sub>         | 3) Polar covalent bond |  |
| d) H <sub>2</sub> +I <sub>2</sub> | 4) Ionic bond          |  |

#### Answers: a)-2, b)-1, c)-4), d)-3

Q-11: A coordinate bond is formed in a molecule when an atom

- a) has an electric charge
- b) has all of its valence electrons shared
- c) has only one unshared electron
- d) has one or more unshared electron pairs.

**Answer: d)** has one or more unshared electron pairs **Q-12:** Why is  $N(SiH_3)_3$  planar but  $(SiH_3)_3$ P pyramidal?

**Answer:** When electron pairs are donated from the central atom to a side atom, hybridisation always decreases by one step. In  $N(SiH_3)_3$ , electron donation takes place from 2p of N-atom to 3d of Si atom. As a result of the formation of the  $2p(N)\pi$ -3d(Si) $\pi$  coordinate bond,  $N(SiH_3)_3$  is planar and not pyramidal.

On the other hand, in  $(SiH_3)_3P$  there is no such coordinate bond formation, therefore hybridization remains unaffected.

**Q-13:** When two species, X and Y, form an electron-pair bond but X does not contribute electrons to the bond. What information can be predicted about the X-Y bond?

**Answer:** Because Y contributes electrons to the bond formation, the bond formed between X and Y is covalent. Because one atom is donating electrons, it is also coordinate. The bond is thus a coordinate covalent bond.



**Q-14:** In coordination compounds, a coordinate covalent bond is formed between what kind of particles?

- a) A ligand and counter ion
- b) Metal and ligand
- c) Counter ion and metal
- d) between ligands

Answer: b) Metal and ligand

Explanation: Ligands are electron donor species that donate electrons to metal ions through the formation of coordinate covalent bonds.

Q-15: Explain the formation of a coordinate bond in the CO molecule.

**Answer:** A covalent coordinate bond is formed between carbon and oxygen in a CO molecule. The oxygen atom donates one of its unshared electron pairs to carbon, allowing both carbon and oxygen to have a stable configuration.

## Practise Questions on Coordinate Bond

- Q-1: In a coordinate bond
- a) Electrons are transferred between bonded atoms
- b) Electrons are equally shared between bonded atoms
- c) Electrons are shared only by one atom
- d) Electrons are donated by both the atoms

Answer: c) Electrons are shared only by one atom

**Q-2:** What type of bond exists between B and O in  $(C_2H_5)_2OBH_3$ ?

- a) Banana bond
- b) Hydrogen bond
- c) Ionic bond
- d) Dative bond

Answer: d) Dative bond

Explanation: O has a lone pair of electrons that it donates to Boron's empty 2p orbital, forming a dative bond.

**Q-3:** Which of the following species contain a coordinate bond? a) FeCl<sub>3</sub>



b) CO
c) [Fe(CN)₅NO]<sup>2-</sup>
d) N<sub>3</sub><sup>-</sup>

#### Answer: b) and c)

**Q-4:** What are the conditions required for the formation of  $\pi$ -coordinate bond?

**Answer:** For a molecule to form a  $\pi$ -coordinate bond, the following conditions must be met: a) The atom-atom bond should be polar.

b) For donation, a lone pair must be present on the donor atom, and the acceptor must have empty orbitals.

c) For effective overlapping, at least one element must be from the second period.

**Q-5:** Why is the Lewis acidity of  $BF_3$  lower than that of  $BCI_3$ , despite the fact that fluorine is more electronegative than chlorine?

**Answer:** Acidity in a molecule occurs when it lacks electrons. The formation of a  $2p(B)\pi$ - $2p(F)\pi$  coordinate bond reduces the electron deficiency in BF<sub>3</sub>. However, in BCl<sub>3</sub>, it is of the type  $2p(B)\pi$ - $3p(Cl)\pi$ , which has a lower strength than the  $2p(B)\pi$ - $2p(F)\pi$  coordinate bond. As a result, BF<sub>3</sub> has a lower Lewis acidity than BCl<sub>3</sub>.