XL - Q # **Biochemistry** ## Section 1: Organization of life; Importance of water; Structure and function of biomolecules: Amino acids, Carbohydrates, Lipids, Proteins and Nucleic acids; Protein structure, folding / misfolding and function; Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin. #### Section 2: Enzyme kinetics, regulation and inhibition; Vitamins and Coenzymes; Bioenergetics and metabolism; Generation and utilization of ATP; Metabolic pathways and their regulation: glycolysis, TCA cycle, pentose phosphate pathway, oxidative phosphorylation, gluconeogenesis, glycogen and fatty acid metabolism; Metabolism of Nitrogen containing compounds: nitrogen fixation, amino acids and nucleotides. Photosynthesis, Calvin cycle. ## Section 3: Biochemical separation techniques: ion exchange, size exclusion and affinity chromatography, centrifugation; Characterization of biomolecules by electrophoresis; DNA- protein and protein – protein interactions; UV-visible and fluorescence spectroscopy; Mass spectrometry. ### Section 4: Cell structure and organelles; Biological membranes; Action potential; Transport across membranes; Membrane assembly and Protein targeting; Signal transduction; Receptor-ligand interaction; Hormones and neurotransmitters. ### Section 5: DNA replication, transcription and translation; DNA damage and repair; Biochemical regulation of gene expression; Recombinant DNA technology and applications: PCR, site directed mutagenesis, DNA-microarray; Next generation sequencing; Gene silencing and editing. #### Section 6: Immune system: Innate and adaptive; Cell of the immune system; Active and passive immunity; Complement system; Antibody structure, function and diversity; B cell and T Cell receptors; B cell and T cell activation; Major histocompatibilty complex; Immunological techniques: Immunodiffusion, immune-electrophoresis, RIA and ELISA, flow cytometry; monoclonal antibodies and their applications.