MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Let $x^{*} y=x^{2}+y^{3}$ and $\left(x^{*} 1\right){ }^{*} 1=x^{*}\left(1^{*} 1\right)$. Then a value of $2 \sin ^{-1}\left(\frac{x^{4}+x^{2}-2}{x^{4}+x^{2}+2}\right)$ is
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{6}$

Answer (B)

Sol. Given $x^{*} y=x^{2}+y^{3}$ and $\left(x^{*} 1\right)^{*} 1=x^{*}\left(1^{*} 1\right)$
So, $\left(x^{2}+1\right)^{*} 1=x^{*} 2$
$\Rightarrow\left(x^{2}+1\right)^{2}+1=x^{2}+8$
$\Rightarrow x^{4}+2 x^{2}+2=x^{2}+8$
$\Rightarrow\left(x^{2}\right)^{2}+x^{2}-6=0$
$\therefore\left(x^{2}+3\right)\left(x^{2}-2\right)=0$
$\therefore \quad x^{2}=2$
Now, $2 \sin ^{-1}\left(\frac{x^{4}+x^{2}-2}{x^{4}+x^{2}+2}\right)=2 \sin ^{-1}\left(\frac{4}{8}\right)$

$$
=2 \cdot \frac{\pi}{6}=\frac{\pi}{3}
$$

2. The sum of all the real roots of the equation $\left(e^{2 x}-4\right)\left(6 e^{2 x}-5 e^{x}+1\right)=0$ is
(A) $\log _{e} 3$
(B) $-\log _{e} 3$
(C) $\log _{e} 6$
(D) $-\log _{e} 6$

Answer (B)

Sol. Given equation : $\left(e^{2 x}-4\right)\left(6 e^{2 x}-5 e^{x}+1\right)=0$
$\Rightarrow e^{2 x}-4=0$ or $6 e^{2 x}-5 e^{x}+1=0$
$\Rightarrow \quad \mathrm{e}^{2 \mathrm{x}}=4 \quad$ or $6\left(e^{x}\right)^{2}-3 e^{x}-2 e^{x}+1=0$
$\Rightarrow 2 x=\ln 4 \quad$ or $\left(3 e^{x}-1\right)\left(2 e^{x}-1\right)=0$
$\Rightarrow \quad x=\ln 2 \quad$ or $e^{x}=\frac{1}{3}$ or $e^{x}=\frac{1}{2}$
or $x=\ln \left(\frac{1}{3}\right),-\ln 2$
Sum of all real roots $=\ln 2-\ln 3-\ln 2$ $=-\ln 3$
3. Let the system of linear equations
$x+y+a z=2$
$3 x+y+z=4$
$x+2 z=1$
have a unique solution (x^{*}, y^{*}, z^{*}). If (α, x^{*}), ($\left.y^{*}, \alpha\right)$ and $\left(x^{*},-y^{*}\right)$ are collinear points, then the sum of absolute values of all possible values of α is
(A) 4
(B) 3
(C) 2
(D) 1

Answer (C)

Sol. Given system of equations
$x+y+a z=2$
$3 x+y+z=4$
$x+2 z=1$

Solving (i), (ii) and (iii), we get
$x=1, y=1, z=0$ (and for unique solution $a \neq-3$)
Now, $(\alpha, 1),(1, \alpha)$ and $(1,-1)$ are collinear
$\therefore\left|\begin{array}{ccc}\alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & -1 & 1\end{array}\right|=0$
$\Rightarrow \alpha(\alpha+1)-1(0)+1(-1-\alpha)=0$
$\Rightarrow \alpha^{2}-1=0$
$\therefore \quad \alpha= \pm 1$
\therefore Sum of absolute values of $\alpha=1+1=2$
4. Let $x, y>0$. If $x^{3} y^{2}=2^{15}$, then the least value of $3 x$ $+2 y$ is
(A) 30
(B) 32
(C) 36
(D) 40

Answer (D)
Sol. $x, y>0$ and $x^{3} y^{2}=2^{15}$
Now, $3 x+2 y=(x+x+x)+(y+y)$
So, by A.M \geq G.M inequality

$$
\begin{aligned}
\frac{3 x+2 y}{5} & \geq \sqrt[5]{x^{3} \cdot y^{2}} \\
\therefore \quad 3 x+2 y & \geq 5 \sqrt[5]{2^{15}} \\
& \geq 40
\end{aligned}
$$

$\therefore \quad$ Least value of $3 x+4 y=40$
5. Let $f(x)= \begin{cases}\frac{\sin (x-[x])}{x-[x]}, & x \in(-2,-1) \\ \max \{2 x, 3[|x|]\}, & |x|<1 \\ 1, & \text { otherwise }\end{cases}$

Where [t] denotes greatest integer $\leq t$. If m is the number of points where f is not continuous and n is the number of points where f is not differentiable, then the ordered pair (m, n) is
(A) $(3,3)$
(B) $(2,4)$
(C) $(2,3)$
(D) $(3,4)$

Answer (C)

$\int \frac{\sin (x-[x])}{x[x]} \quad, x \in(-2,-1)$
Sol. $f(x)=\{\max \{2 x, 3[|x|]\}, \quad|x|<1$
$1 \quad, \quad$ otherwise
$f(x)=\left\{\begin{array}{ccc}\frac{\sin (x+2)}{x+2} & , & x \in(-2,-1) \\ 0, & x \in(-1,0] \\ 2 x & , & x \in(0,1) \\ 1, & \text { othersiwe }\end{array}\right.$
It clearly shows that $f(x)$ is discontinuous
At $x=-1,1$ also non differentiable and at $x=0$, L.H.D $=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=0$

$$
\text { R.H.D }=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=2
$$

$\therefore f(x)$ is not differentiable at $x=0$
$\therefore \quad m=2, n=3$
6. The value of the integral

$$
\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{d x}{\left(1+e^{x}\right)\left(\sin ^{6} x+\cos ^{6} x\right)} \text { is equal to }
$$

(A) 2π
(B) 0
(C) π
(D) $\frac{\pi}{2}$

Answer (C)

Sol. $I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{d x}{\left(1+e^{x}\right)\left(\sin ^{6} x+\cos ^{6} x\right)}$
$I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{d x}{\left(1+e^{-x}\right)\left(\sin ^{6} x+\cos ^{6} x\right)}$
(i) and (ii)

From equation (i) \& (ii)

$$
2 I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{d x}{\sin ^{6} x+\cos ^{6} x}
$$

$$
\Rightarrow \quad I=\int_{0}^{\frac{\pi}{2}} \frac{d x}{\sin ^{6} x+\cos ^{6} x}=\int_{0}^{\frac{\pi}{2}} \frac{d x}{1-\frac{3}{4} \sin ^{2} 2 x}
$$

$$
\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{4 \sec ^{2} 2 x d x}{4+\tan ^{2} 2 x}=2 \int_{0}^{\frac{\pi}{4}} \frac{4 \sec ^{2} 2 x}{4+\tan ^{2} 2 x} d x
$$

$$
\text { when } x=0, t=0
$$

Now, $\tan 2 x=t$
when, $x=\frac{\pi}{4}, t \rightarrow \infty$
$2 \sec ^{2} 2 x d x=d t$
$\therefore \quad I=2 \int_{0}^{\infty} \frac{2 d t}{4+t^{2}}=2\left(\tan ^{-1} \frac{t}{2}\right)_{0}^{\infty}$
$=2 \frac{\pi}{2}=\pi$
7.

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{\left(n^{2}+1\right)(n+1)}+\frac{n^{2}}{\left(n^{2}+4\right)(n+2)}+\frac{n^{2}}{\left(n^{2}+9\right)(n+3)}+\right.
$$

$$
\left.\cdots+\frac{n^{2}}{\left(n^{2}+n^{2}\right)(n+n)}\right)
$$

is equal to
(A) $\frac{\pi}{8}+\frac{1}{4} \log _{e} 2$
(B) $\frac{\pi}{4}+\frac{1}{8} \log _{e} 2$
(C) $\frac{\pi}{4}-\frac{1}{8} \log _{e} 2$
(D) $\frac{\pi}{8}+\frac{1}{8} \log _{e} \sqrt{2}$

Answer (A)

Sol. $\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{\left(n^{2}+1\right)(n+1)}+\frac{n^{2}}{\left(n^{2}+4\right)(n+2)}+\ldots .+\frac{n^{2}}{\left(n^{2}+n^{2}\right)(n+n)}\right)$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{n^{2}}{\left(n^{2}+r^{2}\right)(n+r)}$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{n} \frac{1}{\left[1+\left(\frac{r}{n}\right)^{2}\right]\left[1+\left(\frac{r}{n}\right)\right]}$
$=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)(1+x)} d x$
$=\frac{1}{2} \int_{0}^{1}\left[\frac{1}{1+x}-\frac{(x-1)}{\left(1+x^{2}\right)}\right] d x$
$=\frac{1}{2}\left[\ln (1+x)-\frac{1}{2} \ln \left(1+x^{2}\right)+\tan ^{-1} x\right]_{0}^{1}$
$=\frac{1}{2}\left[\frac{\pi}{4}+\frac{1}{2} \ln 2\right]=\frac{\pi}{8}+\frac{1}{4} \ln 2$
8. A particle is moving in the $x y$-plane along a curve C passing through the point $(3,3)$. The tangent to the curve C at the point P meets the x-axis at Q. If the y-axis bisects the segment $P Q$, then C is a parabola with
(A) Length of latus rectum 3
(B) Length of latus rectum 6
(C) Focus $\left(\frac{4}{3}, 0\right)$
(D) Focus $\left(0, \frac{3}{4}\right)$

Answer (A)

Sol. According to the question (Let $P(x, y)$)
$2 x-y \frac{d x}{d y}=0 \quad\binom{\because$ equation of tangent at }{$P: y-y=\frac{d y}{d x}(y-x)}$
$\therefore \quad 2 \frac{d y}{y}=\frac{d x}{x}$
$\Rightarrow \quad 2 \ln y=\ln x+\ln c$
$\Rightarrow y^{2}=c x$
\because this curve passes
through $(3,3) \therefore c=3 \quad \therefore$ required parabola
$y^{2}=3 x$ and L.R $=3$
9. Let the maximum area of the triangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1, a>2$, having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the y-axis, be $6 \sqrt{3}$. Then the eccentricity of the ellipse is
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{1}{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\frac{\sqrt{3}}{4}$

Answer (A)

Sol. Given ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1, a>2$

Let $A(\theta)$ be the area of $\triangle A B B^{\prime}$

$$
\text { Then } \mathrm{A}(\theta)=\frac{1}{2} 4 \sin \theta(a+a \cos \theta)
$$

$$
A^{\prime}(\theta)=a\left(2 \cos \theta+2 \cos ^{2} \theta\right)
$$

For maxima $A^{\prime}(\theta)=0$
$\Rightarrow \cos \theta=-1, \cos \theta=\frac{1}{2}$
But for maximum area $\cos \theta=\frac{1}{2}$
$\therefore \quad A(\theta)=6 \sqrt{3}$
$\Rightarrow \quad 2 \frac{\sqrt{3}}{2}\left(a+\frac{a}{2}\right)=6 \sqrt{3}$
$\Rightarrow a=4$
$\therefore \quad e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{4}{16}}=\frac{\sqrt{3}}{2}$
10. Let the area of the triangle with vertices $A(1, \alpha)$, $B(\alpha, 0)$ and $C(0, \alpha)$ be 4 sq. units. If the points $(\alpha,-\alpha),(-\alpha, \alpha)$ and $\left(\alpha^{2}, \beta\right)$ are collinear, then β is equal to
(A) 64
(B) -8
(C) -64
(D) 512

Answer (C)

Sol. $\because A(1, \alpha), B(\alpha, 0)$ and $C(0, \alpha)$ are the vertices of $\triangle A B C$ and area of $\triangle A B C=4$
$\therefore\left|\frac{1}{2}\right| \begin{array}{lll}1 & \alpha & 1 \\ \alpha & 0 & 1 \\ 0 & \alpha & 1\end{array}|\mid=4$
$\Rightarrow\left|1(1-\alpha)-\alpha(\alpha)+\alpha^{2}\right|=8$
$\Rightarrow \quad \alpha= \pm 8$
Now, $(\alpha,-\alpha),(-\alpha, \alpha)$ and $\left(\alpha^{2}, \beta\right)$ are collinear
$\therefore\left|\begin{array}{ccc}8 & -8 & 1 \\ -8 & 8 & 1 \\ 64 & \beta & 1\end{array}\right|=0=\left|\begin{array}{ccc}-8 & 8 & 1 \\ 8 & -8 & 1 \\ 64 & \beta & 1\end{array}\right|$
$\Rightarrow 8(8-\beta)+8(-8-64)+1(-8 \beta-8 \times 64)=0$
$\Rightarrow 8-\beta-72-\beta-64=0$
$\Rightarrow \beta=-64$
11. The number of distinct real roots of the equation $x^{7}-7 x-2=0$ is
(A) 5
(B) 7
(C) 1
(D) 3

Answer (D)
Sol. Given equation $x^{7}-7 x-2=0$
Let $f(x)=x^{7}-7 x-2$

$$
f(x)=7 x^{6}-7=7\left(x^{6}-1\right)
$$

and $f(x)=0 \Rightarrow x=+1$
and $f(-1)=-1+7-2=5>0$

$$
f(1)=1-7-2=-8<0
$$

So, roughly sketch of $f(x)$ will be

So, number of real roots of $f(x)=0$ and 3
12. A random variable X has the following probability distribution :

X	0	1	2	3	4
$P(X)$	k	$2 k$	$4 k$	$6 k$	$8 k$

The value of $P(1<X<4 \mid x \leq 2)$ is equal to
(A) $\frac{4}{7}$
(B) $\frac{2}{3}$
(C) $\frac{3}{7}$
(D) $\frac{4}{5}$

Answer (A)

Sol. $\because x$ is a random variable
$\therefore k+2 k+4 k+6 k+8 k=1$
$\therefore k=\frac{1}{21}$
Now, $P(1<x<4 \mid x \leq 2)=\frac{4 k}{7 k}=\frac{4}{7}$
13. The number of solutions of the equation $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, \quad x \in[-3 \pi, 3 \pi]$ is:
(A) 8
(B) 5
(C) 6
(D) 7

Answer (D)
Sol. $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi, 3 \pi]$
$\Rightarrow \cos 2 x+\cos \frac{2 \pi}{3}=\frac{1}{2} \cos ^{2} 2 x$
$\Rightarrow \cos ^{2} 2 x-2 \cos 2 x-1=0$
$\Rightarrow \cos 2 x=1$
$\therefore \quad x=-3 \pi,-2 \pi,-\pi, 0, \pi, 2 \pi, 3 \pi$
$\therefore \quad$ Number of solutions $=7$
14. If the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda}$ and $\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}$ is $\frac{1}{\sqrt{3}}$, then the sum of all possible values of λ is :
(A) 16
(B) 6
(C) 12
(D) 15

Answer (A)

Sol. Let $\vec{a}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$

$$
\begin{aligned}
& \vec{a}_{2}=2 \hat{i}+4 \hat{j}+5 \hat{k} \\
\vec{p}= & 2 \hat{i}+3 \hat{j}+\lambda \hat{k}, \vec{q}=\hat{i}+4 \hat{j}+5 \hat{k} \\
\therefore \quad & \vec{p} \times \vec{q}=(15-4 \lambda) \hat{i}-(10-\lambda) \hat{j}+5 \hat{k} \\
& \vec{a}_{2}-\vec{a}_{1}=\hat{i}+2 \hat{j}+2 \hat{k}
\end{aligned}
$$

$\therefore \quad$ Shortest distance

$$
=\left|\frac{(15-4 \lambda)-2(10-\lambda)+10}{\sqrt{(15-4 \lambda)^{2}+(10-\lambda)^{2}+25}}\right|=\frac{1}{\sqrt{3}}
$$

$\Rightarrow 3(5-2 \lambda)^{2}=(15-4 \lambda)^{2}+(10-\lambda)^{2}+25$
$\Rightarrow 5 \lambda^{2}-80 \lambda+275=0$
\therefore Sum of values of $\lambda=\frac{80}{5}=16$
15. Let the points on the plane P be equidistant from the points $(-4,2,1)$ and $(2,-2,3)$. Then the acute angle between the plane P and the plane $2 x+y+$ $3 z=1$ is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{5 \pi}{12}$

Answer (C)

Sol. Let $P(x, y, z)$ be any point on plane P_{1}
Then $(x+4)^{2}+(y-2)^{2}+(z-1)^{2}$

$$
=(x-2)^{2}+(y+2)^{2}+(z-3)^{2}
$$

$\Rightarrow 12 x-8 y+4 z+4=0$
$\Rightarrow 3 x-2 y+z+1=0$
And $P_{2}: 2 x+y+3 z=1$
$\therefore \quad$ angle between P_{1} and P_{2}

$$
\cos \theta\left|\frac{6-2+3}{14}\right| \Rightarrow \theta=\frac{\pi}{3}
$$

16. Let \hat{a} and \hat{b} be two unit vectors such that $|(\hat{a}+\hat{b})+2(\hat{a} \times \hat{b})|=2$. If $\theta \in(0, \pi)$ is the angle between \hat{a} and \hat{b}, then among the statements:
$(S 1): 2|\hat{a} \times \hat{b}|=|\hat{a}-\hat{b}|$
(S2) : The projection of \hat{a} on $(\hat{a}+\hat{b})$ is $\frac{1}{2}$
(A) Only (S1) is true
(B) Only (S2) is true
(C) Both (S1) and (S2) are true
(D) Both (S1) and (S2) are false

Answer (C)

Sol. $\because|\hat{a}+\hat{b}+2(\hat{a} \times \hat{b})|=2, \theta \in(0, \pi)$
$\Rightarrow|\hat{a}+\hat{b}+2(\hat{a} \times \hat{b})|^{2}=4$.
$\Rightarrow|\hat{a}|^{2}+|\hat{b}|^{2}+4|\hat{a} \times \hat{b}|^{2}+2 \hat{a} \cdot \hat{b}=4$.
$\therefore \quad \cos \theta=\cos 2 \theta$
$\therefore \quad \theta=\frac{2 \pi}{3}$
where θ is angle between \hat{a} and \hat{b}.
$\therefore \quad 2|\hat{a} \times \hat{b}|=\sqrt{3}=|\hat{a}-\hat{b}|$
(S1) is correct
And projection of \hat{a} on $(\hat{a}+\hat{b})=\left|\frac{\hat{a} \cdot(\hat{a}+\hat{b})}{|\hat{a}+\hat{b}|}\right|=\frac{1}{2}$.
(S2) is correct.
17. If $y=\tan ^{-1}\left(\sec x^{3}-\tan x^{3}\right), \frac{\pi}{2}<x^{3}<\frac{3 \pi}{2}$, then
(A) $x y^{\prime \prime}+2 y^{\prime}=0$
(B) $x^{2} y^{\prime \prime}-6 y+\frac{3 \pi}{2}=0$
(C) $x^{2} y^{\prime \prime}-6 y+3 \pi=0$
(D) $x y^{\prime \prime}-4 y^{\prime}=0$

Answer (B)

Sol. Let $x^{3}=\theta \Rightarrow \frac{\theta}{2} \in\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$
$\therefore \quad y=\tan ^{-1}(\sec \theta-\tan \theta)$

$$
\begin{aligned}
&=\tan ^{-1}\left(\frac{1-\sin \theta}{\cos \theta}\right) \\
& \therefore \quad y=\frac{\pi}{4}-\frac{\theta}{2} . \\
& y=\frac{\pi}{4}-\frac{x^{3}}{2} \\
& \therefore \quad y^{\prime}=\frac{-3 x^{2}}{2} \\
& y^{\prime \prime}=-3 x \\
& \therefore \quad x^{2} y^{\prime \prime}-6 y+\frac{3 \pi}{2}=0 .
\end{aligned}
$$

18. Consider the following statements:
A : Rishi is a judge.
B : Rishi is honest.
C : Rishi is not arrogant.
The negation of the statement "if Rishi is a judge and he is not arrogant, then he is honest" is
(A) $B \rightarrow(A \vee C)$
(B) $(\sim B) \wedge(A \wedge C)$
(C) $B \rightarrow((\sim A) \vee(\sim C))$
(D) $B \rightarrow(A \wedge C)$

Answer (B)

Sol. \because given statement is
$(A \wedge C) \rightarrow B$
Then its negation is
$\sim\{(A \wedge C) \rightarrow B\}$
or $\sim\{\sim(A \wedge C) \vee B\}$
$\therefore \quad(A \wedge C) \wedge(\sim B)$
or $\quad(\sim B) \wedge(A \wedge C)$
19. The slope of normal at any point $(x, y), x>0, y>0$ on the curve $y=y(x)$ is given by $\frac{x^{2}}{x y-x^{2} y^{2}-1}$. If the curve passes through the point $(1,1)$, then e. $y(e)$ is equal to
(A) $\frac{1-\tan (1)}{1+\tan (1)}$
(B) $\tan (1)$
(C) 1
(D) $\frac{1+\tan (1)}{1-\tan (1)}$

Answer (D)

Sol. $\because \quad-\frac{d x}{d y}=\frac{x^{2}}{x y-x^{2} y^{2}-1}$
$\therefore \quad \frac{d y}{d x}=\frac{x^{2} y^{2}-x y+1}{x^{2}}$
Let $x y=v \Rightarrow y+x \frac{d y}{d x}=\frac{d v}{d x}$
$\therefore \quad \frac{d v}{d x}-y=\frac{\left(v^{2}-v+1\right) y}{v}$
$\therefore \quad \frac{d v}{d x}=\frac{v^{2}+1}{x}$
$\because \quad y(1)=1 \Rightarrow \tan ^{-1}(x y)=\ln x+\tan ^{-1}(1)$
Put $x=e$ and $y=y(e)$ we get
$\tan ^{-1}(e \cdot y(e))=1+\tan ^{-1} 1$.
$\tan ^{-1}(e \cdot y(e))-\tan ^{-1} 1=1$
$\therefore \quad e(y(e))=\frac{1+\tan (1)}{1-\tan (1)}$
20. Let λ^{*} be the largest value of λ for which the function $f_{\lambda}(x)=4 \lambda x^{3}-36 \lambda x^{2}+36 x+48$ is increasing for all $x \in \mathbb{R}$. Then $\hbar_{\lambda}{ }^{*}(1)+\hbar_{\lambda}{ }^{*}(-1)$ is equal to :
(A) 36
(B) 48
(C) 64
(D) 72

Sol. $\because \quad f_{\lambda}(x)=4 \lambda x^{3}-36 \lambda x^{2}+36 x+48$
$\therefore \quad f_{\lambda}^{\prime}(x)=12\left(\lambda x^{2}-6 \lambda x+3\right)$
For $f_{\lambda}(x)$ increasing : $(6 \lambda)^{2}-12 \lambda \leq 0$
$\therefore \quad \lambda \in\left[0, \frac{1}{3}\right]$
$\therefore \quad \lambda^{*}=\frac{1}{3}$
Now, $f_{\lambda}^{*}(x)=\frac{4}{3} x^{3}-12 x^{2}+36 x+48$
$\therefore \quad f_{\lambda}^{*}(1)+f_{\lambda}^{*}(-1)=73 \frac{1}{2}-1 \frac{1}{2}$
$=72$.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse andw the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Let $S=\{z \in \mathbb{C}:|z-3| \leq 1$ and $z(4+3 i)+$ $\bar{z}(4-3 i) \leq 24\}$. If $\alpha+i \beta$ is the point in S which is closest to $4 i$, then $25(\alpha+\beta)$ is equal to \qquad -

Answer (80)

Sol. Here $|z-3|<1$
$\Rightarrow(x-3)^{2}+y^{2}<1$
and $z=(4+3 i)+\bar{z}(4-3 i) \leq 24$
$\Rightarrow 4 x-3 y \leq 12$
$\tan \theta=\frac{4}{3}$

Answer (D)
\therefore Coordinate of $P=(3-\cos \theta, \sin \theta)$

$$
=\left(3-\frac{3}{5}, \frac{4}{5}\right)
$$

$\therefore \quad \alpha+i \beta=\frac{12}{5}+\frac{4}{5} i$
$\therefore 25(\alpha+\beta)=80$
2. Let $S=\left\{\left(\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right) ; a, b \in\{1,2,3, \ldots .100\}\right\}$ and let T_{n} $=\left\{A \in S: A^{n(n+1)}=\zeta\right.$. Then the number of elements

$$
\text { in } \xrightarrow[n=1]{100} T_{n} \text { is }
$$

Answer (100)

Sol. $S=\left\{\left(\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right): a, b \in\{1,2,3, \ldots, 100\}\right\}$
$\because A=\left(\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right)$ then even powers of
A as $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, if $b=1$ and $a \in\{1, \ldots . ., 100\}$
Here, $n(n+1)$ is always even.
$\therefore \quad T_{1}, T_{2}, T_{3}, \ldots, T_{\mathrm{n}}$ are all I for $b=1$ and each value of a.

$$
\therefore \quad \stackrel{100}{n=1} T_{n}=100
$$

3. The number of 7-digit numbers which are multiples of 11 and are formed using all the digits $1,2,3,4$, 5,7 and 9 is \qquad —.

Answer (576)

Sol. Sum of all given numbers $=31$

I

II

III

IV

V

VII

Difference between odd and even positions must be 0,11 or 22 , but 0 and 22 are not possible.
\therefore Only difference 11 is possible
This is possible only when either $1,2,3,4$ is filled in odd position in some order and remaining in other order. Similar arrangements of $2,3,5$ or $7,2,1$ or 4,5,1 at even positions.
\therefore Total possible arrangements $=(4!\times 3!) \times 4$

$$
=576
$$

4. The sum of all the elements of the set $\{\alpha \in\{1,2, \ldots, 100\}: \operatorname{HCF}(\alpha, 24)=1\}$ is

Answer (1633)

Sol. The numbers upto 24 which gives g.c.d. with 24 equals to 1 are $1,5,7,11,13,17,19$ and 23.
Sum of these numbers $=96$
There are four such blocks and a number 97 is there upto 100.
\therefore Complete sum
$=96+(24 \times 8+96)+(48 \times 8+96)+(72 \times 8+96)+97$
$=1633$
5. The remainder on dividing $1+3+3^{2}+3^{3}+\ldots+3^{2021}$ by 50 \qquad is
Answer (4)
Sol. $1+3+3^{2}+\ldots .+3^{2021}=\frac{3^{2022}-1}{2}$

$$
\begin{aligned}
& =\frac{1}{2}\left\{(10-1)^{1011}-1\right\} \\
& =\frac{1}{2}\{100 k+10110-1-1\} \\
& =50 k_{1}+4
\end{aligned}
$$

$\therefore \quad$ Remainder $=4$
6. The area (in sq. units) of the region enclosed between the parabola $y^{2}=2 x$ and the line $x+y=4$
is \qquad
Answer (18)
Sol.

The required area $=\int_{-4}^{2}\left(4-y-\frac{y^{2}}{2}\right) d y$
$=\left[4 y-\frac{y^{2}}{2}-\frac{y^{3}}{6}\right]_{-4}^{2}$
$=18$ square units
7. Let a circle $C:(x-h)^{2}+(y-k)^{2}=r^{2}, k>0$, touch the x-axis at $(1,0)$. If the line $x+y=0$ intersects the circle C at P and Q such that the length of the chord $P Q$ is 2 , then the value of $h+k+r$ is equal to \qquad .

Sol.

Here, $O M^{2}=O P^{2}-P M^{2}$
$\left(\frac{|1+r| \mid}{\sqrt{2}}\right)^{2}=r^{2}-1$
$\therefore r^{2}-2 r-3=0$
$\therefore \quad r=3$
$\therefore \quad$ Equation of circle is

$$
\begin{aligned}
& (x-1)^{2}+(y-3)^{2}=3^{2} \\
\therefore & h=1, k=3, r=3 \\
\therefore & h+k+r=7
\end{aligned}
$$

8. In an examination, there are 10 true-false type questions. Out of 10 , a student can guess the answer of 4 questions correctly with probability $\frac{3}{4}$ and the remaining 6 questions correctly with probability $\frac{1}{4}$. If the probability that the student guesses the answers of exactly 8 questions correctly out of 10 is $\frac{27 k}{4^{10}}$, then k is equal to

Answer (479)

Sol. Student guesses only two wrong. So there are three possibilities
(i) Student guesses both wrong from $1^{\text {st }}$ section
(ii) Student guesses both wrong from $2^{\text {nd }}$ section
(iii) Student guesses two wrong one from each section
Required probabilities $={ }^{4} C_{2}\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{2}\left(\frac{1}{4}\right)^{6}+$
${ }^{6} C_{2}\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{4}+{ }^{4} C_{1} \cdot{ }^{6} C_{1}\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{5}$
$=\frac{1}{4^{10}}\left[6 \times 9+15 \times 9^{4}+24 \times 9^{2}\right]$
$=\frac{27}{4^{10}}[2+27 \times 15+72]$
$=\frac{27 \times 479}{4^{10}}$
9. Let the hyperbola $H: \frac{x^{2}}{a^{2}}-y^{2}=1$ and the ellipse $E: 3 x^{2}+4 y^{2}=12$ be such that the length of latus rectum of H is equal to the length of latus rectum of E. If e_{H} and e_{E} are the eccentricities of H and E respectively, then the value of $12\left(e_{H}^{2}+e_{E}^{2}\right)$ is equal to \qquad .

Answer (42)

Sol. $\because \quad H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{1}=1$
\therefore Length of latus rectum $=\frac{2}{a}$
$E: \frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
Length of latus rectum $=\frac{6}{2}=3$
$\because \frac{2}{a}=3 \Rightarrow a=\frac{2}{3}$

$$
12\left(e_{H}^{2}+e_{E}^{2}\right)=12\left(1+\frac{9}{4}\right)+\left(1-\frac{3}{4}\right)=42
$$

10. Let P_{1} be a parabola with vertex $(3,2)$ and focus $(4,4)$ and P_{2} be its mirror image with respect to the line $x+2 y=6$. Then the directrix of P_{2} is $x+2 y=$ \qquad .
Answer (10)
Sol. Focus $=(4,4)$ and vertex $=(3,2)$
\therefore Point of intersection of directrix with axis of parabola $=A=(2,0)$
Image of $A(2,0)$ with respect to line
$x+2 y=6$ is $B\left(x_{2}, y_{2}\right)$
$\therefore \quad \frac{x_{2}-2}{1}=\frac{y_{2}-0}{2}=\frac{-2(2+0-6)}{5}$
$\therefore \quad B\left(x_{2}, y_{2}\right)=\left(\frac{18}{5}, \frac{16}{5}\right)$.
Point B is point of intersection of direction with axes of parabola P_{2}.
$\therefore \quad x+2 y=\lambda$ must have point $\left(\frac{18}{5}, \frac{16}{5}\right)$
$\therefore \quad x+2 y=10$
