MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Let $A=\{z \in \mathbf{C}: 1 \leq|z-(1+i)| \leq 2\}$ and $B=\{z \in A$ $:|z-(1-i)|=1\}$. Then, B :
(A) Is an empty set
(B) Contains exactly two elements
(C) Contains exactly three elements
(D) Is an infinite set

Answer (D)

Sol.

Set A represents region 1 i.e. R_{1} and clearly set B has infinite points in it.
2. The remainder when 3^{2022} is divided by 5 is :
(A) 1
(B) 2
(C) 3
(D) 4

Answer (D)
Sol. $3^{2022}=(10-1)^{1011}={ }^{1011} C_{0}(10)^{1011}(-1)^{0}+$ ${ }^{1011} C_{1}(10)^{1010}(-1)^{1}+\ldots . .+{ }^{1011} C_{1010}(10)^{1}(-1)^{1010}+$ ${ }^{1011} C_{1011}(10)^{0}(-1)^{1011}$
$=5 k-1$, where $k \in I$
So when divided by 5 , it leaves remainder 4 .
3. The surface area of a balloon of spherical shape being inflated, increases at a constant rate. If initially, the radius of balloon is 3 units and after 5 seconds, it becomes 7 units, then its radius after 9 seconds is :
(A) 9
(B) 10
(C) 11
(D) 12

Answer (A)

Sol. $S=4 \pi r^{2}$

$$
\begin{aligned}
& \frac{d S}{d t}=8 \pi r \frac{d r}{d t} \\
& \frac{d S}{d t}=\text { constant so } \Rightarrow r \frac{d r}{d t}=k \text { (Let) } \\
& r d r=k d t \Rightarrow \frac{r^{2}}{2}=k t+C \\
& \text { at } t=0, r=3 \\
& \frac{9}{2}=C \\
& \text { at } t=5, \\
& \frac{49}{2}=k \cdot 5+\frac{9}{2} \Rightarrow k=4 \\
& \text { At } t=9, \frac{r^{2}}{2}=\frac{81}{2} \\
& \text { So, } r=9
\end{aligned}
$$

4. Bag A contains 2 white, 1 black and 3 red balls and bas B contains 3 black, 2 red and n white balls. One bag is chosen at random and 2 balls drawn from it at random, are found to be 1 red and 1 black. If the probability that both balls come from Bag A is $\frac{6}{11}$, then n is equal to \qquad -.
(A) 13
(B) 6
(C) 4
(D) 3

Answer (C)

Sol.

$P(1 R$ and $1 B)=P(A) \cdot P\left(\frac{1 R 1 B}{A}\right)+P(B) \cdot P\left(\frac{1 R 1 B}{B}\right)$ $=\frac{1}{2} \cdot \frac{{ }^{3} C_{1} \cdot{ }^{1} C_{1}}{{ }^{6} C_{2}}+\frac{1}{2} \cdot \frac{{ }^{2} C_{1} \cdot{ }^{3} C_{1}}{{ }^{n+5} C_{2}}$
$P\left(\frac{1 R 1 B}{A}\right)=\frac{\frac{1}{2} \cdot \frac{3}{15}}{\frac{1}{2} \cdot \frac{3}{15}+\frac{1}{2} \cdot \frac{6 \cdot 2}{(n+5)(n+4)}}=\frac{6}{11}$
$\Rightarrow \frac{\frac{1}{10}}{\frac{1}{10}+\frac{6}{(n+5)(n+4)}}=\frac{6}{11}$
$\Rightarrow \quad \frac{11}{10}=\frac{6}{10}+\frac{36}{(n+5)(n+4)}$
$\Rightarrow \quad \frac{5}{10 \times 36}=\frac{1}{(n+5)(n+4)}$
$\Rightarrow n^{2}+9 n-52=0$
$\Rightarrow n=4$ is only possible value
5. Let $x^{2}+y^{2}+A x+B y+C=0$ be a circle passing through $(0,6)$ and touching the parabola $y=x^{2}$ at $(2,4)$. Then $A+C$ is equal to \qquad _.
(A) 16
(B) $\frac{88}{5}$
(C) 72
(D) -8

Answer (A)

Sol. For tangent to parabola $y=x^{2}$ at $(2,4)$

$$
\left.\frac{d y}{d x}\right|_{(2,4)}=4
$$

Equation of tangent is
$y-4=4(x-2)$
$\Rightarrow 4 x-y-4=0$
Family of circle can be given by
$(x-2)^{2}+(y-4)^{2}+\lambda(4 x-y-4)=0$
As it passes through $(0,6)$
$2^{2}+2^{2}+\lambda(-10)=0$
$\Rightarrow \lambda=\frac{4}{5}$
Equation of circle is

$$
\begin{aligned}
& (x-2)^{2}+(y-4)^{2}+\frac{4}{5}(4 x-y-4)=0 \\
& \Rightarrow \quad\left(x^{2}+y^{2}-4 x-8 y+20\right)+\left(\frac{16}{5} x-\frac{4}{5} y-\frac{16}{5}\right)=0 \\
& \quad A=-4+\frac{16}{5}, C=20-\frac{16}{5}
\end{aligned}
$$

So, $A+C=16$
6. The number of values of α for which the system of equations:
$x+y+z=\alpha$
$\alpha x+2 \alpha y+3 z=-1$
$x+3 \alpha y+5 z=4$
is inconsistent, is
(A) 0
(B) 1
(C) 2
(D) 3

Answer (B)
Sol. $\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ \alpha & 2 \alpha & 3 \\ 1 & 3 \alpha & 5\end{array}\right|$
$=1(10 \alpha-9 \alpha)-1(5 \alpha-3)+1\left(3 \alpha^{2}-2 \alpha\right)$
$=\alpha-5 \alpha+3+3 \alpha^{2}-2 \alpha$
$=3 \alpha^{2}-6 \alpha+3$
For inconsistency $\Delta=0$ i.e. $\alpha=1$
Now check for $\alpha=1$
$x+y+z=1$
$x+2 y+3 z=-1$
$x+3 y+5 z=4$
By (ii) $\times 2-$ (i) $\times 1$
$x+3 y+5 z=-3$
so equations are
inconsistent for $\alpha=1$
7. If the sum of the squares of the reciprocals of the roots α and β of the equation $3 x^{2}+\lambda x-1=0$ is 15 , then $6\left(\alpha^{3}+\beta^{3}\right)^{2}$ is equal to :
(A) 18
(B) 24
(C) 36
(D) 96

Answer (B)
Sol. $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=15 \Rightarrow \frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}}=15$

$$
\begin{aligned}
& \Rightarrow \frac{\frac{\lambda^{2}}{9}+\frac{2}{3}}{\frac{1}{9}}=15 \\
& \Rightarrow \frac{\lambda^{2}}{9}=1 \Rightarrow \lambda^{2}=9 \\
& \alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right) \\
& =\left(\frac{-\lambda}{3}\right)\left(\frac{\lambda^{2}}{9}-3\left(\frac{-1}{3}\right)\right)=\left(\frac{-\lambda}{3}\right)\left(\frac{\lambda^{2}}{9}+1\right)=\frac{-2 \lambda}{3} \\
& 6\left(\alpha^{3}+\beta^{3}\right)^{2}=6 \cdot \frac{4 \lambda^{2}}{9}=24
\end{aligned}
$$

8. The set of all values of k for which $\left(\tan ^{-1} x\right)^{3}+\left(\cot ^{-1} x\right)^{3}=k \pi^{3}, x \in \mathrm{R}, \quad$ is the interval:
(A) $\left[\frac{1}{32}, \frac{7}{8}\right)$
(B) $\left(\frac{1}{24}, \frac{13}{16}\right)$
(C) $\left[\frac{1}{48}, \frac{13}{16}\right]$
(D) $\left[\frac{1}{32}, \frac{9}{8}\right)$

Answer (A)

Sol. Let $\tan ^{-1} x=t \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

$$
\cot ^{-1} x=\frac{\pi}{2}-t
$$

$f(t)=t^{3}+\left(\frac{\pi}{2}-t\right)^{3} \Rightarrow f^{\prime}(t)=3 t^{2}-3\left(\frac{\pi}{2}-t\right)^{2}$
$f^{\prime}(t)=0$ at $t=\frac{\pi}{4}$
$\left.f(t)\right|_{\min }=\frac{\pi^{3}}{64}+\frac{\pi^{3}}{64}=\frac{\pi^{3}}{32}$
Max will occur around $t=-\frac{\pi}{2}$
Range of $f(t)=\left[\frac{\pi^{3}}{32}, \frac{7 \pi^{3}}{8}\right)$
$k \in\left[\frac{1}{32}, \frac{7}{8}\right)$
9. Let $S=\{\sqrt{n}: 1 \leq n \leq 50$ and n is odd $\}$.

Let $a \in S$ and $A=\left[\begin{array}{ccc}1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1\end{array}\right]$
If $\sum_{a \in S} \operatorname{det}(\operatorname{adj} A)=100 \lambda$, then λ is equal to :
(A) 218
(B) 221
(C) 663
(D) 1717

Answer (B)

Sol. $|A|=a^{2}+1$

$$
\begin{aligned}
& |\operatorname{adj} A|=\left(a^{2}+1\right)^{2} \\
& \quad S=\{1, \sqrt{3}, \sqrt{5}, \sqrt{7}, \ldots, \sqrt{49}\}
\end{aligned}
$$

$\sum_{a \in S} \operatorname{det}(\operatorname{adj} A)=\left(1^{2}+1\right)^{2}+(3+1)^{2}+(5+1)^{2}+\ldots+$ $(49+1)^{2}$

$$
\begin{aligned}
& =2^{2}\left(1^{2}+2^{2}+3^{2}+\ldots+25^{2}\right) \\
& =4 \cdot \frac{25 \cdot 26 \cdot 51}{6}=100 \cdot 221
\end{aligned}
$$

$\lambda=221$
10. For the function
$f(x)=4 \log _{\mathrm{e}}(x-1)-2 x^{2}+4 x+5, x>1$, which one of the following is NOT correct?
(A) f is increasing in $(1,2)$ and decreasing in $(2, \infty)$
(B) $f(x)=-1$ has exactly two solutions
(C) $f(e)-f^{\prime}(2)<0$
(D) $f(x)=0$ has a root in the interval $(e, e+1)$

Answer (C)

Sol. $f(x)=\frac{4}{x-1}-4 x+4=\frac{4\left(2 x-x^{2}\right)}{x-1}$

So maxima occurs at $x=2$
$f(2)=4 \cdot 0-2 \cdot 2^{2}+4 \cdot 2+5=5$
so clearly $f(x)=-1$ has
exactly 2 solutions
$f^{\prime \prime}(x)=\frac{4(2-2 x)(x-1)}{(x-1)^{2}}-\left(2 x-x^{2}\right)$
so $f^{\prime}(e)-f^{\prime \prime}(2)>0$
so option c is not correct
11. If the tangent at the point $\left(x_{1}, y_{1}\right)$ on the curve $y=x^{3}$ $+3 x^{2}+5$ passes through the origin, then $\left(x_{1}, y_{1}\right)$ does NOT lie on the curve :
(A) $x^{2}+\frac{y^{2}}{81}=2$
(B) $\frac{y^{2}}{9}-x^{2}=8$
(C) $y=4 x^{2}+5$
(D) $\frac{x}{3}-y^{2}=2$

Answer (D)

Sol. $m_{0 p}-m_{\text {Tangent }}$

$$
\begin{aligned}
& \frac{y_{1}}{x_{1}}=3 x_{1}^{2}+6 x_{1} \\
& \Rightarrow \frac{x_{1}^{3}+3 x_{1}^{2}+5}{x_{1}}=3 x_{1}^{2}+6 x_{1} \\
& \Rightarrow x_{1}^{3}+3 x_{1}^{2}+5=3 x_{1}^{3}+6 x_{1}^{2} \\
& \Rightarrow 2 x_{1}^{3}+3 x_{1}^{2}-5=0 \\
& \Rightarrow\left(x_{1}-1\right)\left(2 x_{1}^{2}+5 x_{1}+5\right)=0
\end{aligned}
$$

So, $\left(x_{1}, y_{1}\right)=(1,9)$
12. The sum of absolute maximum and absolute minimum values of the function $f(x)=\left|2 x^{2}+3 x-2\right|$ $+\sin x \cos x$ in the interval $[0,1]$ is :
(A) $3+\frac{\sin (1) \cos ^{2}\left(\frac{1}{2}\right)}{2}$
(B) $3+\frac{1}{2}(1+2 \cos (1)) \sin (1)$
(C) $5+\frac{1}{2}(\sin (1)+\sin (2))$
(D) $2+\sin \left(\frac{1}{2}\right) \cos \left(\frac{1}{2}\right)$

Answer (B)

Sol. $f(x)=|(2 x-1)(x+2)|+\frac{\sin 2 x}{2}$
$0 \leq x<\frac{1}{2} \quad f(x)=(1-2 x)(x+2)+\frac{\sin 2 x}{2}$
$f^{\prime}(x)=-4 x-3+\cos 2 x<0$
For $x \geq \frac{1}{2}: \quad f^{\prime}(x)=4 x+3+\cos 2 x>0$
So, minima occurs at $x=\frac{1}{2}$

$$
\begin{aligned}
\left.f(x)\right|_{\min } & =\left|2\left(\frac{1}{2}\right)^{2}+\frac{3}{2}-2\right|+\sin \left(\frac{1}{2}\right) \cdot \cos \left(\frac{1}{2}\right) \\
& =\frac{1}{2} \sin 1
\end{aligned}
$$

So, maxima is possible at $x=0$ or $x=1$
Now checking for $x=0$ and $x=1$, we can see it attains its maximum value at $x=1$

$$
\begin{aligned}
\left.f(x)\right|_{\max } & =|2+3-2|+\frac{\sin 2}{2} \\
& =3+\frac{1}{2} \sin 2
\end{aligned}
$$

Sum of absolute maximum and minimum value $=3+\frac{1}{2}(\sin 1+\sin 2)$
13. If $\left\{a_{i}\right\}_{i=1}^{n}$, where n is an even integer, is an arithmetic progression with common difference 1 , and $\sum_{i=1}^{n} a_{i}=192, \sum_{i=1}^{n / 2} a_{2 i}=120$, then n is equal to :
(A) 48
(B) 96
(C) 92
(D) 104

Answer (B)

Sol. $a_{1}+a_{2}+\ldots+a_{n}=192 \Rightarrow \frac{n}{2}\left(a_{1}+a_{n}\right)=192$
$a_{2}+a_{4}+a_{6}+\ldots+a_{n}=120$
$\Rightarrow \frac{n}{4}\left(a_{1}+1+a_{n}\right)=120$
From (2) \& (1)
$\frac{480}{n}-\frac{384}{n}=1 \Rightarrow n=96$
14. If $x=x(y)$ is the solution of the differential equation $y \frac{d x}{d y}=2 x+y^{3}(y+1) e^{y}, x(1)=0$; then $x(e)$ is equal to :
(A) $e^{3}\left(e^{e}-1\right)$
(B) $e^{e}\left(e^{3}-1\right)$
(C) $e^{2}\left(e^{e}+1\right)$
(D) $e^{e}\left(e^{2}-1\right)$

Answer (A)

Sol. $\frac{d x}{d y}-\frac{2 x}{y}=y^{2}(y+1) e^{y}$

$$
\text { If }=e^{\int-\frac{2}{y} d y}=e^{-2 \ln y}=\frac{1}{y^{2}}
$$

Solution is given by

$$
\begin{aligned}
& x \cdot \frac{1}{y^{2}}=\int y^{2}(y+1) e^{y} \cdot \frac{1}{y^{2}} d y \\
\Rightarrow & \frac{x}{y^{2}}=\int(y+1) e^{y} d y \\
\Rightarrow & \frac{x}{y^{2}}=y e^{y}+c
\end{aligned}
$$

$\Rightarrow \quad x=y^{2}\left(y e^{y}+c\right)$
at, $y=1, x=0$
$\Rightarrow 0=1\left(1 . e^{1}+c\right) \Rightarrow c=-e$
at $y=e$,

$$
x=e^{2}\left(e . e^{e}-e\right)
$$

15. Let $\lambda x-2 y=\mu$ be a tangent to the hyperbola $a^{2} x^{2}$ $-y^{2}=b^{2}$. Then $\left(\frac{\lambda}{a}\right)^{2}-\left(\frac{\mu}{b}\right)^{2}$ is equal to:
(A) -2
(B) -4
(C) 2
(D) 4

Answer (D)

Sol. $\frac{x^{2}}{\left(\frac{b^{2}}{a^{2}}\right)}-\frac{y^{2}}{b^{2}}=1$
Tangent in slope form $\Rightarrow y=m x \pm \sqrt{\frac{b^{2}}{a^{2}} m^{2}-b^{2}}$
i.e., same as $y=\frac{\lambda x}{2}-\frac{\mu}{2}$

Comparing coefficients,

$$
m=\frac{\lambda}{2}, \frac{b^{2}}{a^{2}} m^{2}-b^{2}=\frac{\mu^{2}}{4}
$$

Eliminating $m, \frac{b^{2}}{a^{2}} \cdot \frac{\lambda^{2}}{4}-b^{2}=\frac{\mu^{2}}{4}$

$$
\Rightarrow \frac{\lambda^{2}}{a^{2}}-\frac{\mu^{2}}{b^{2}}=4
$$

16. Let \hat{a}, \hat{b} be unit vectors. If \vec{c} be a vector such that the angle between \hat{a} and \vec{c} is $\frac{\pi}{12}$, and $\hat{b}=\vec{c}+2(\vec{c} \times \hat{a})$, then $|6 \vec{c}|^{2}$ is equal to:
(A) $6(3-\sqrt{3})$
(B) $3+\sqrt{3}$
(C) $6(3+\sqrt{3})$
(D) $6(\sqrt{3}+1)$

Answer (C)

Sol. $\because \quad \hat{b}=\vec{c}+2(\vec{c} \times \hat{a})$

$$
\begin{equation*}
\Rightarrow \quad \hat{b} \cdot \vec{c}=|\vec{c}|^{2} \tag{i}
\end{equation*}
$$

$\therefore \quad \hat{b}-\vec{c}=2(\vec{c} \times \vec{a})$

$$
\begin{aligned}
& \Rightarrow|\hat{b}|^{2}+|\vec{c}|^{2}-2 \hat{b} \cdot \vec{c}=4|\vec{c}|^{2}|\vec{a}|^{2} \sin ^{2} \frac{\pi}{12} \\
& \Rightarrow \quad 1+|\dot{c}|^{2}-2|\dot{c}|^{2}=4|\dot{c}|^{2}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)^{2} \\
& \Rightarrow \quad 1=|\vec{c}|^{2}(3-\sqrt{3}) \\
& \Rightarrow \quad 36|\vec{c}|^{2}=\frac{36}{3-\sqrt{3}}=6(3+\sqrt{3})
\end{aligned}
$$

17. If a random variable X follows the Binomial distribution $B(33, p)$ such that $3 P(X=0)=P(X=1)$, then the value of $\frac{P(X=15)}{P(X=18)}-\frac{P(X=16)}{P(X=17)}$ is equal to:
(A) 1320
(B) 1088
(C) $\frac{120}{1331}$
(D) $\frac{1088}{1089}$

Answer (A)

Sol. $3 P(X=0)=P(X=1)$

$$
\begin{aligned}
& 3 \cdot{ }^{n} C_{0} P^{0}(1-P)^{n}={ }^{n} C_{1} P^{1}(1-P)^{n-1} \\
& \frac{3}{n}= \frac{P}{1-P} \Rightarrow \frac{1}{11}=\frac{P}{1-P} \\
& \Rightarrow 1-P=11 P \\
& \Rightarrow P=\frac{1}{12} \\
& \frac{P(X=15)}{P(X=18)}-\frac{P(X=16)}{P(X=17)} \\
& \Rightarrow \frac{{ }^{33} C_{15} P^{15}(1-P)^{18}}{{ }^{33} C_{18} P^{18}(1-P)^{15}}-\frac{{ }^{33} C_{16} P^{16}(1-P)^{17}}{{ }^{33} C_{17} P^{17}(1-P)^{16}} \\
& \Rightarrow\left(\frac{1-P}{P}\right)^{3}-\left(\frac{1-P}{P}\right) \\
& \Rightarrow 11^{3}-11=1320
\end{aligned}
$$

18. The domain of the function $f(x)=\frac{\cos ^{-1}\left(\frac{x^{2}-5 x+6}{x^{2}-9}\right)}{\log _{e}\left(x^{2}-3 x+2\right)}$ is:
(A) $(-\infty, 1) \cup(2, \infty)$
(B) $(2, \infty)$
(C) $\left[-\frac{1}{2}, 1\right) \cup(2, \infty)$
(D) $\left[-\frac{1}{2}, 1\right) \cup(2, \infty)-\left\{\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right\}$

Answer (D)

Sol. $-1 \leq \frac{x^{2}-5 x+6}{x^{2}-9} \leq 1$ and $x^{2}-3 x+2>0, \neq 1$
$\left.\frac{(x-3)(2 x+1)}{x^{2}-9} \geq 0 \right\rvert\, \frac{5(x-3)}{x^{2}-9} \geq 0$
Solution to this inequality is
$x \in\left[\frac{-1}{2}, \infty\right)-\{3\}$
for $x^{2}-3 x+2>0$ and $\neq 1$
$x \in(-\infty, 1) \cup(2, \infty)-\left\{\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right\}$
Combining the two solution sets (taking intersection)

$$
x \in\left[-\frac{1}{2}, 1\right) \cup(2, \infty)-\left\{\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right\}
$$

19. Let $S=\left\{\theta \in[-\pi, \pi]-\left\{ \pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\}$. If $T=\sum_{\theta \in S} \cos 2 \theta$, then $T+n(S)$ is equal to:
(A) $7+\sqrt{3}$
(B) 9
(C) $8+\sqrt{3}$
(D) 10

Answer (B)

Sol. $\tan \theta(\sin \theta+1)-\sin 2 \theta=0$

$$
\begin{aligned}
& \tan \theta\left(\sin \theta+1-2 \cos ^{2} \theta\right)=0 \\
& \Rightarrow \tan \theta=0 \text { or } 2 \sin ^{2} \theta+\sin \theta-1=0 \\
& \Rightarrow(2 \sin \theta+1)(\sin \theta-1)=0 \\
& \Rightarrow \sin \theta=\frac{-1}{2} \text { or } 1
\end{aligned}
$$

But, $\sin \theta=1$ not possible
$\theta=0, \pi,-\pi,-\frac{\pi}{6}, \frac{-5 \pi}{6}$
$\mathrm{n}(\mathrm{S})=5$
$T=\sum \cos 2 \theta=\cos 0^{\circ}+\cos 2 \pi+\cos (-2 \pi)$

$$
+\cos \left(-\frac{5 \pi}{3}\right)+\cos \left(-\frac{\pi}{3}\right)
$$

$=4$
20. The number of choices for $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$, such that $(p \Delta q) \Rightarrow((p \Delta \sim q) \vee((\sim p) \Delta q))$ is a tautology, is
(A) 1
(B) 2
(C) 3
(D) 4

Answer (B)

Sol. Let $x:(p \Delta q) \Rightarrow(p \Delta \sim q) \vee(\sim p \Delta q)$

Case-I

When Δ is same as v
Then $(p \Delta \sim q) \vee(\sim p \Delta q)$ becomes
$(p \vee \sim q) \vee(\sim p \vee q)$ which is always true, so x becomes a tautology.

Case-II

When Δ is same as \wedge
Then $(p \wedge q) \Rightarrow(p \wedge \sim q) \vee(\sim p \wedge q)$
If $p \wedge q$ is T, then $(p \wedge \sim q) \vee(\sim p \wedge q)$ is F so x cannot be a tautology.

Case-III

When Δ is same as \Rightarrow
Then $(p \Rightarrow \sim q) \vee(\sim p \Rightarrow q)$ is same at $(\sim p \vee \sim q) \vee$ $(p \vee q)$, which is always true, so x becomes a tautology.

Case-IV

When Δ is same as \Leftrightarrow
Then $(p \Leftrightarrow q) \Rightarrow(p \Leftrightarrow \sim q) \vee(\sim p \Leftrightarrow q)$
$p \Leftrightarrow q$ is true when p and q have same truth values, then $p \Leftrightarrow \sim q$ and $\sim p \Leftrightarrow q$ both are false. Hence x cannot be a tautology.

So finally x can be \vee or \Rightarrow.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse andw the on-screen virtual numeric keypad in the place designated to enter the answer.

1. The number of one-one functions $f:\{a, b, c, d\} \rightarrow$ $\{0,1,2, \ldots, 10\}$ such that $2 f(a)-f(b)+3 f(c)+f(d)$ $=0$ is \qquad -.
Answer (31)
Sol. $\because 3 f(c)+2 f(a)+f(d)=f(b)$

Value of $f(c)$	Value of $f(a)$	Number of functions
0	1	7
	2	5
	3	3
	4	2
1	0	6
	2	2
	3	1
2	0	3
	1	1

2. In an examination, there are 5 multiple choice questions with 3 choices, out of which exactly one is correct. There are 3 marks for each correct answer, - 2 marks for each wrong answer and 0 mark if the question is not attempted. Then, the number of ways a student appearing in the examination gets 5 marks is \qquad .

Answer (40)

Sol. Let student marks x correct answers and y incorrect. So
$3 x-2 y=5$ and $x+y \leq 5$ where $x, y \in \mathrm{~W}$
Only possible solution is $(x, y)=(3,2)$
Student can mark correct answer by only one choice but for incorrect answer, there are two choices. So total number of ways of scoring 5 marks $={ }^{5} C_{3}(1)^{3} .(2)^{2}=40$
3. Let $A\left(\frac{3}{\sqrt{a}}, \sqrt{a}\right), a>0$, be a fixed point in the $x y$ plane, The image of A in y-axis be B and the image of B in x-axis be C. If $D(3 \cos \theta, a \sin \theta)$ is a point in the fourth quadrant such that the maximum area of $\triangle A C D$ is 12 square units, then a is equal to \qquad .

Answer (8)

Sol. Clearly B is $\left(-\frac{3}{\sqrt{a}},+\sqrt{a}\right)$ and C is $\left(-\frac{3}{\sqrt{a}},-\sqrt{a}\right)$

Area of $\triangle A C D=\frac{1}{2}\left|\begin{array}{ccc}\frac{3}{\sqrt{a}} & \sqrt{a} & 1 \\ -\frac{3}{\sqrt{a}} & -\sqrt{a} & 1 \\ 3 \cos \theta & a \sin \theta & 1\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}0 & 0 & 1 \\ -\frac{3}{\sqrt{a}} & -\sqrt{a} & 1 \\ 3 \cos \theta & a \sin \theta & 1\end{array}\right|$
$\Rightarrow \Delta=|3 \sqrt{a} \sin \theta+3 \sqrt{a} \cos \theta|=3 \sqrt{a}|\sin \theta+\cos \theta|$
$\Rightarrow \quad \Delta_{\text {max }}=3 \sqrt{a} \cdot \sqrt{2}=12 \Rightarrow a=(2 \sqrt{2})^{2}=8$
4. Let a line having direction ratios $1,-4,2$ intersect the lines $\frac{x-7}{3}=\frac{y-1}{-1}=\frac{z+2}{1}$ and $\frac{x}{2}=\frac{y-7}{3}=\frac{z}{1}$ at the points A and B. Then $(A B)^{2}$ is equal to

Answer (84)

Sol. Let $A(3 \lambda+7,-\lambda+1, \lambda-2)$ and $B(2 \mu, 3 \mu+7, \mu)$
So, DR's of $A B \propto 3 \lambda-2 \mu+7,-(\lambda+3 \mu+6), \lambda-\mu$ -2
Clearly $\frac{3 \lambda-2 \mu+7}{1}=\frac{\lambda+3 \mu+6}{4}=\frac{\lambda-\mu-2}{2}$
$\Rightarrow 5 \lambda-3 \mu=-16$
And $\lambda-5 \mu=10$
From (i) and (ii) we get $\lambda=-5, \mu=-3$
So, A is $(-8,6,-7)$ and B is $(-6,-2,-3)$

$$
A B=\sqrt{4+64+16} \Rightarrow(A B)^{2}=84
$$

5. The number of points where the function
$f(x)=\left\{\begin{array}{ccc}\left|2 x^{2}-3 x-7\right| & \text { if } & x \leq-1 \\ {\left[4 x^{2}-1\right]} & \text { if } & -1<x<1 \\ |x+1|+|x-2| & \text { if } & x \geq 1,\end{array}\right.$
$[t]$ denotes the greatest integer $\leq t$, is discontinuous is \qquad -.

Answer (7)
Sol. $\because \quad f(-1)=2$ and $f(1)=3$
For $x \in(-1,1),\left(4 x^{2}-1\right) \in[-1,3)$
hence $f(x)$ will be discontinuous at $x=1$ and also
whenever $4 x^{2}-1=0,1$ or 2
$\Rightarrow \quad x= \pm \frac{1}{2}, \pm \frac{1}{\sqrt{2}}$ and $\pm \frac{\sqrt{3}}{2}$
So there are total 7 points of discontinuity.
6. Let $f(\theta)=\sin \theta+\int_{-\pi / 2}^{\pi / 2}(\sin \theta+t \cos \theta) f(t) d t$. Then the value of $\left|\int_{0}^{\pi / 2} f(\theta) d \theta\right|$ is \qquad -

Answer (1)

Sol. $f(\theta)=\sin \theta\left(1+\int_{-\pi / 2}^{\pi / 2} f(t) d t\right)+\cos \theta\left(\int_{-\pi / 2}^{\pi / 2} t f(t) d t\right)$
Clearly $f(\theta)=a \sin \theta+b \cos \theta$
Where $a=1+\int_{-\pi / 2}^{\pi / 2}(a \sin t+b \cos t) d t \Rightarrow a=1+2 b$
and $b=\int_{-\pi / 2}^{\pi / 2}(a t \sin t+b t \cos t) d t \Rightarrow b=2 a$
from (1) and (2) we get
$a=-\frac{1}{3}$ and $b=-\frac{2}{3}$
So $f(\theta)=-\frac{1}{3}(\sin \theta+2 \cos \theta)$
$\Rightarrow \quad\left|\int_{0}^{\pi / 2} f(\theta) d \theta\right|=\frac{1}{3}(1+2 \times 1)=1$
7. Let $\operatorname{Max}_{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\alpha$ and $\operatorname{Min}_{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\beta$.

If $\int_{\beta-\frac{8}{3}}^{2 \alpha-1} \operatorname{Max}\left\{\frac{9-x^{2}}{5-x}, x\right\} d x=\alpha_{1}+\alpha_{2} \log _{e}\left(\frac{8}{15}\right)$ then
$\alpha_{1}+\alpha_{2}$ is equal to \qquad -

Answer (34)

Sol. Let $f(x)=\frac{x^{2}-9}{x-5} \Rightarrow f^{\prime}(x)=\frac{(x-1)(x-9)}{(x-5)^{2}}$
So, $\alpha=f(1)=2$ and $\beta=\min (f(0), f(2))=\frac{5}{3}$
Now, $\int_{-1}^{3} \max \left\{\frac{x^{2}-9}{x-5}, x\right\} d x=\int_{-1}^{9 / 5} \frac{x^{2}-9}{x-5} d x+\int_{9 / 5}^{3} x d x$
$=\int_{-1}^{9 / 5}\left(x+5+\frac{16}{x-5}\right) d x+\left.\frac{x^{2}}{2}\right|_{9 / 5} ^{3}$
$=\frac{28}{25}+14+16 \ln \left(\frac{8}{15}\right)+\frac{72}{25}=18+16 \ln \left(\frac{8}{15}\right)$
Clearly $\alpha_{1}=18$ and $\alpha_{2}=16$, so $\alpha_{1}+\alpha_{2}=34$.
8. If two tangents drawn from a point (α, β) lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}\right.$ $+50)^{2}$ equals \qquad -.

Answer (2929)

Sol. $\because(\alpha, \beta)$ lies on the given ellipse, $25 \alpha^{2}+4 \beta^{2}=1$

Tangent to the parabola, $y=m x+\frac{1}{m}$ passes through (α, β). So, $\alpha m^{2}-\beta m+1=0$ has roots m_{1} and $4 m_{1}$,
$m_{1}+4 m_{1}=\frac{\beta}{\alpha}$ and $m_{1} \cdot 4 m_{1}=\frac{1}{\alpha}$
Gives that $4 \beta^{2}=25 \alpha$
from (1) and (2)
$25\left(\alpha^{2}+\alpha\right)=1$
Now, $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$
$=25(2 \alpha+1)^{2}+2500(2 \alpha+1)^{2}$
$=2525\left(4 \alpha^{2}+4 \alpha+1\right)$ from equation (3)
$=2525\left(\frac{4}{25}+1\right)$
$=2929$
9. Let S be the region bounded by the curves $y=x^{3}$ and $y^{2}=x$. The curve $y=2|x|$ divides S into two regions of areas R_{1} and R_{2}.
If $\max \left\{R_{1}, R_{2}\right\}=R_{2}$, then $\frac{R_{2}}{R_{1}}$ is equal to \qquad -

Answer (19)
Sol.

$C_{1}: y=x^{3}$
$C_{2}: y^{2}=x$
and $C_{3}=y=2|x|$
C_{1} and C_{2} intersect at $(1,1)$
C_{2} and C_{3} intersect at $\left(\frac{1}{4}, \frac{1}{2}\right)$
Clearly $R_{1}=\int_{0}^{1 / 4}(\sqrt{x}-2 x) d x=\frac{2}{3}\left(\frac{1}{8}\right)-\frac{1}{16}=\frac{1}{48}$
and $R_{1}+R_{2}=\int_{0}^{1}\left(\sqrt{x}-x^{3}\right) d x=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}$

So, $\frac{R_{1}+R_{2}}{R_{1}}=\frac{5 / 12}{1 / 48} \Rightarrow 1+\frac{R_{2}}{R_{1}}=20$
$\Rightarrow \frac{R_{2}}{R_{1}}=19$
10. If the shortest distance between the lines $\vec{r}=(-\hat{i}+3 \hat{k})+\lambda(\hat{i}-a \hat{j})$ and $\vec{r}=(-\hat{j}+2 \hat{k})+\mu(\hat{i}-\hat{j}+\hat{k})$ is $\sqrt{\frac{2}{3}}$, then the integral value of a is equal to

Answer (2)
Sol. $\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -a & 0 \\ 1 & -1 & 1\end{array}\right|=-a \hat{i}-\hat{j}+(a-1) \hat{k}$
$\vec{a}_{1}-\vec{a}_{2}=-\hat{i}+\hat{j}+\hat{k}$
Shortest distance $=\left|\frac{\left(\vec{a}_{1}-\vec{a}_{2}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
$\Rightarrow \sqrt{\frac{2}{3}}=\frac{2(a-1)}{\sqrt{a^{2}+1+(a-1)^{2}}}$
$\Rightarrow 6\left(a^{2}-2 a+1\right)=2 a^{2}-2 a+2$
$\Rightarrow(a-2)(2 a-1)=0 \Rightarrow a=2$ because $a \in z$.

