MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Let $A=\{x \in R:|x+1|<2\}$ and $B=\{x \in R: \mid x-$ $1 \mid \geq 2\}$. Then which one of the following statements is NOT true?
(A) $A-B=(-1,1)$
(B) $B-A=R-(-3,1)$
(C) $A \cap B=(-3,-1]$
(D) $A \cup B=R-[1,3)$

Answer (B)
Sol. $A=(-3,1)$ and $B=(-\infty,-1] \cup[3, \infty)$

$$
\text { So, } \begin{aligned}
A-B & =(-1,1) \\
B-A & =(-\infty,-3] \cup[3, \infty)=R-(-3,3) \\
A \cap B & =(-3,-1]
\end{aligned}
$$

and $A \cup B=(-\infty, 1) \cup[3, \infty)=R-[1,3)$
2. Let $a, b \in R$ be such that the equation $a x^{2}-2 b x+$ $15=0$ has a repeated root α. If α and β are the roots of the equation $x^{2}-2 b x+21=0$, then $\alpha^{2}+\beta^{2}$ is equal to
(A) 37
(B) 58
(C) 68
(D) 92

Answer (B)
Sol. $a x^{2}-2 b x+15=0$ has repeated root so $b^{2}=15 a$ and $\alpha=\frac{15}{b}$
$\because \quad \alpha$ is a root of $x^{2}-2 b x+21=0$
So $\frac{225}{b^{2}}=9 \Rightarrow b^{2}=25$
Now $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=4 b^{2}-42=100-42$
3. Let z_{1} and z_{2} be two complex numbers such that $\overline{z_{1}}=i \overline{z_{2}}$ and $\arg \left(\frac{z_{1}}{\overline{z_{2}}}\right)=\pi$. Then
(A) $\arg \mathrm{z}_{2}=\left(\frac{\pi}{4}\right)$
(B) $\arg \mathrm{z}_{2}=-\frac{3 \pi}{4}$
(C) $\arg \mathrm{z}_{1}=\frac{\pi}{4}$
(D) $\arg \mathrm{z}_{1}=-\frac{3 \pi}{4}$

Answer (C)

Sol. $\because \quad \frac{z_{1}}{z_{2}}=-i \Rightarrow z_{1}=-i z_{2}$
$\Rightarrow \arg \left(z_{1}\right)=-\frac{\pi}{2}+\arg \left(z_{2}\right)$
Also $\arg \left(z_{1}\right)-\arg \left(\bar{z}_{2}\right)=\pi$
$\Rightarrow \arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\pi$
From (i) and (ii), we get $\arg \left(z_{1}\right)=\frac{\pi}{4}$ and $\arg \left(z_{2}\right)=\frac{3 \pi}{4}$
4. The system of equations
$-k x+3 y-14 z=25$
$-15 x+4 y-k z=3$
$-4 x+y+3 z=4$
is consistent for all k in the set
(A) R
(B) $R-\{-11,13\}$
(C) $R-\{13\}$
(D) $R-\{-11,11\}$

Answer (D)

Sol. The system may be inconsistent if $\left|\begin{array}{ccc}-k & 3 & -14 \\ -15 & 4 & -k \\ -4 & 1 & 3\end{array}\right|=0 \Rightarrow k= \pm 11$

Hence if system is consistent then $k \in R-\{11,-11\}$
5. $\lim _{x \rightarrow \frac{\pi}{2}} \tan ^{2} x\left(\left(2 \sin ^{2} x+3 \sin x+4\right)^{\frac{1}{2}}-\left(\sin ^{2} x+6 \sin x+2\right)^{\frac{1}{2}}\right)$ is equal to
(A) $\frac{1}{12}$
(B) $-\frac{1}{18}$
(C) $-\frac{1}{12}$
(D) $\frac{1}{6}$

Answer (A)

Sol. $\lim _{x \rightarrow \frac{\pi}{2}} \tan ^{2} x\left\{\sqrt{2 \sin ^{2} x+3 \sin x+4}-\sqrt{\sin ^{2} x+6 \sin x+2}\right\}$
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan ^{2} x\left(\sin ^{2} x-3 \sin x+2\right)}{\sqrt{2 \sin ^{2} x+3 \sin x+4}+\sqrt{\sin ^{2} x+6 \sin x+2}}$
$=\frac{1}{6} \lim _{x \rightarrow \frac{\pi}{2}} \frac{(1-\sin x)(2-\sin x)}{\cos ^{2} x} \cdot \sin ^{2} x$
$=\frac{1}{6} \lim _{x \rightarrow \frac{\pi}{2}} \frac{(2-\sin x) \sin ^{2} x}{1+\sin x}$
$=\frac{1}{12}$
6. The area of the region enclosed between the parabolas $y^{2}=2 x-1$ and $y^{2}=4 x-3$ is
(A) $\frac{1}{3}$
(B) $\frac{1}{6}$
(C) $\frac{2}{3}$
(D) $\frac{3}{4}$

Answer (A)
Sol. Area of the shaded region

$=2 \int_{0}^{1}\left(\frac{y^{2}+3}{4}-\frac{y^{2}+1}{2}\right) d y$
$=2 \int_{0}^{1}\left(\frac{1}{4}-\frac{y^{2}}{4}\right) d y$
$=2\left[\frac{1}{4}-\frac{1}{12}\right]=\frac{1}{3}$
7. The coefficient of x^{101} in the expression $(5+x)^{500}+$ $x(5+x)^{499}+x^{2}(5+x)^{498}+$ \qquad $+x^{500}, x>0$, is
(A) ${ }^{501} C_{101}(5)^{399}$
(B) ${ }^{501} C_{101}(5)^{400}$
(C) ${ }^{501} C_{100}(5)^{400}$
(D) ${ }^{500} C_{101}(5)^{399}$

Answer (A)

Sol. Coeff. of $x^{101} \mathrm{in} \frac{x^{500}\left[\left(\frac{x+5}{x}\right)^{501}-1\right]}{\frac{x+5}{x}-1}$
$=$ Coeff. of x^{101} in $\frac{1}{5}\left[(x+5)^{501}-x^{501}\right]$
$=\frac{1}{5}^{501} C_{101} \cdot 5^{400}$
$={ }^{501} C_{101} \cdot 5^{399}$
8. The sum $1+2 \cdot 3+3 \cdot 3^{2}+\ldots+10 \cdot 3^{9}$ is equal to
(A) $\frac{2 \cdot 3^{12}+10}{4}$
(B) $\frac{19 \cdot 3^{10}+1}{4}$
(C) $5 \cdot 3^{10}-2$
(D) $\frac{9 \cdot 3^{10}+1}{2}$

Answer (B)

Sol. Let
$S=1.3^{\circ}+2.3^{1}+3.3^{2}+\ldots \ldots .+10.3^{9}$

$$
\begin{aligned}
& \frac{3 S}{}=\frac{1.3^{1}+2.3^{2}+\ldots \ldots \ldots \ldots \ldots+10.3^{10}}{-2 S}=\left(1.3^{\circ}+1.3^{1}+1.3^{2}+\ldots \ldots+1.3^{9}\right)-10.3^{10} \\
\Rightarrow & S=\frac{1}{2}\left[10.3^{10}-\frac{3^{10}-1}{3-1}\right] \\
\Rightarrow & S=\frac{19.3^{10}+1}{4}
\end{aligned}
$$

9. Let P be the plane passing through the intersection of the planes
$\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=5$ and $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=3$, and the point (2, 1, -2). Let the position vectors of the points X and Y be $\hat{i}-2 \hat{j}+4 \hat{k}$ and $5 \hat{i}-\hat{j}+2 \hat{k}$ respectively. Then the points
(A) X and $X+Y$ are on the same side of P
(B) Y and $Y-X$ are on the opposite sides of P
(C) X and Y are on the opposite sides of P
(D) $X+Y$ and $X-Y$ are on the same side of P

Answer (C)
Sol. Let the equation of required plane
$\pi:(x+3 y-z-5)+\lambda(2 x-y+z-3)=0$
$\because(2,1,-2)$ lies on it so, $2+\lambda(-2)=0$
$\Rightarrow \lambda=1$
Hence, $\pi: 3 x+2 y-8=0$

$$
\begin{array}{r}
\because \quad \pi_{x}=-9, \pi_{y}=5, \pi_{x+y}=4 \\
\\
\pi_{x-y}=-22 \text { and } \pi_{y-x}=6
\end{array}
$$

Clearly X and Y are on opposite sides of plane π
10. A circle touches both the y-axis and the line $x+y=0$. Then the locus of its center is
(A) $y=\sqrt{2} x$
(B) $x=\sqrt{2} y$
(C) $y^{2}-x^{2}=2 x y$
(D) $x^{2}-y^{2}=2 x y$

Answer (D)

Sol. Let the centre be (h, k)
So, $|h|=\left|\frac{h+k}{\sqrt{2}}\right|$
$\Rightarrow 2 h^{2}=h^{2}+k^{2}+2 h k$
Locus will be $x^{2}-y^{2}=2 x y$
11. Water is being filled at the rate of $1 \mathrm{~cm}^{3} / \mathrm{sec}$ in a right circular conical vessel (vertex downwards) of height 35 cm and diameter 14 cm . When the height of the water level is 10 cm , the rate ($\mathrm{in} \mathrm{cm}^{2} / \mathrm{sec}$) at which the wet conical surface area of the vessel increase, is
(A) 5
(B) $\frac{\sqrt{21}}{5}$
(C) $\frac{\sqrt{26}}{5}$
(D) $\frac{\sqrt{26}}{10}$

Answer (C)

Sol. $\because \quad V=\frac{1}{3} \pi r^{2} h$ and $\frac{r}{h}=\frac{7}{35}=\frac{1}{5}$

$$
\Rightarrow \quad V=\frac{1}{75} \pi h^{3}
$$

$\frac{d V}{d t}=\frac{1}{25} \pi h^{2} \frac{d h}{d t}=1$
$\Rightarrow \frac{d h}{d t}=\frac{25}{\pi h^{2}}$
Now, $S=\pi r l=\pi\left(\frac{h}{5}\right) \sqrt{h^{2}+\frac{h^{2}}{25}}=\frac{\pi}{25} \sqrt{26} h^{2}$

$$
\Rightarrow \frac{d S}{d t}=\frac{2 \sqrt{26} \pi h}{25} \cdot \frac{d h}{d t}=\frac{2 \sqrt{26}}{h}
$$

$$
\Rightarrow \frac{d S}{d t}_{(h=10)}=\frac{\sqrt{26}}{5}
$$

12. If $b_{n}=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} n x}{\sin x} d x, n \in \mathbb{N}$, then
(A) $b_{3}-b_{2}, b_{4}-b_{3}, b_{5}-b_{4}$ are in an A.P. with common difference -2
(B) $\frac{1}{b_{3}-b_{2}}, \frac{1}{b_{4}-b_{3}}, \frac{1}{b_{5}-b_{4}}$ are in an A. P. with common difference 2
(C) $b_{3}-b_{2}, b_{4}-b_{3}, b_{5}-b_{4}$ are in a G.P.
(D) $\frac{1}{b_{3}-b_{2}}, \frac{1}{b_{4}-b_{3}}, \frac{1}{b_{5}-b_{4}}$ are in an A.P. with common difference -2

Answer (D)

Sol. $b_{n}-b_{n-1}=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} n x-\cos ^{2}(n-1) x}{\sin x} d x$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \frac{-\sin (2 n-1) x \cdot \sin x}{\sin x} d x \\
& =\left.\frac{\cos (2 n-1) x}{2 n-1}\right|_{0} ^{\pi / 2}=-\frac{1}{2 n-1}
\end{aligned}
$$

So, $b_{3}-b_{2}, b_{4}-b_{3}, b_{5}-b_{4}$ are in H.P.
$\Rightarrow \frac{1}{b_{3}-b_{2}}, \frac{1}{b_{4}-b_{3}}, \frac{1}{b_{5}-b_{4}}$ are in A. P. with common difference -2 .
13. If $y=y(x)$ is the solution of the differential equation $2 x^{2} \frac{d y}{d x}-2 x y+3 y^{2}=0$ such that $y(e)=\frac{e}{3}$, then $y(1)$ is equal to
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) 3

Answer (B)

Sol. $2 x^{2} \frac{d y}{d x}-2 x y+3 y^{2}=0$

$$
\begin{aligned}
& \Rightarrow \quad 2 x(x d y-y d x)+3 y^{2} d x=0 \\
& \Rightarrow \quad 2\left(\frac{x d y-y d x}{y^{2}}\right)+3 \frac{d x}{x}=0 \\
& \Rightarrow \quad-\frac{2 x}{y}+3 \ln x=C \\
& \because \quad y(e)=\frac{e}{3} \Rightarrow-6+3=C \Rightarrow C=-3
\end{aligned}
$$

Now, at $x=1,-\frac{2}{y}+0=-3$

$$
y=\frac{2}{3}
$$

14. If the angle made by the tangent at the point $\left(x_{0}, y_{0}\right)$ on the curve $x=12(t+\sin t \cos t)$,
$y=12(1+\sin t)^{2}, 0<t<\frac{\pi}{2}$, with the positive x-axis is $\frac{\pi}{3}$, then y_{0} is equal to:
(A) $6(3+2 \sqrt{2})$
(B) $3(7+4 \sqrt{3})$
(C) 27
(D) 48

Answer (C)

Sol. $\because \frac{d y}{d x}=\frac{24(1+\sin t) \cos t}{12(1+\cos 2 t)}=\frac{1+\sin t}{\cos t}=\tan \left(\frac{\pi}{4}+\frac{t}{2}\right)$
$\because \frac{d y}{d x}\left(x_{0}, y_{0}\right)=\sqrt{3}=\tan \left(\frac{\pi}{4}+\frac{t}{2}\right)$
$\Rightarrow \quad t=\frac{\pi}{6}$
So, $y_{0\left(\text { at } t=\frac{\pi}{6}\right)}=12\left(1+\sin \frac{\pi}{6}\right)^{2}=27$
15. The value of $2 \sin \left(12^{\circ}\right)-\sin \left(72^{\circ}\right)$ is :
(A) $\frac{\sqrt{5}(1-\sqrt{3})}{4}$
(B) $\frac{1-\sqrt{5}}{8}$
(C) $\frac{\sqrt{3}(1-\sqrt{5})}{2}$
(D) $\frac{\sqrt{3}(1-\sqrt{5})}{4}$

Answer (D)

Sol. $2 \sin 12^{\circ}-\sin 72^{\circ}$
$=\sin 12^{\circ}+\left(-2 \cos 42^{\circ} \cdot \sin 30^{\circ}\right)$
$=\sin 12^{\circ}-\cos 42^{\circ}$
$=\sin 12^{\circ}-\sin 48^{\circ}$
$=2 \sin 18^{\circ} \cdot \cos 30^{\circ}$
$=-2\left(\frac{\sqrt{5}-1}{4}\right) \cdot \frac{\sqrt{3}}{2}$
$=\frac{\sqrt{3}(1-\sqrt{5})}{4}$
16. A biased die is marked with numbers $2,4,8,16,32$, 32 on its faces and the probability of getting a face with mark n is $\frac{1}{n}$. If the die is thrown thrice, then the probability, that the sum of the numbers obtained is 48 , is :
(A) $\frac{7}{2^{11}}$
(B) $\frac{7}{2^{12}}$
(C) $\frac{3}{2^{10}}$
(D) $\frac{13}{2^{12}}$

Answer (D)

Sol. There are only two ways to get sum 48, which are $(32,8,8)$ and $(16,16,16)$ So, required probability

$$
\begin{aligned}
& =3\left(\frac{2}{32} \cdot \frac{1}{8} \cdot \frac{1}{8}\right)+\left(\frac{1}{16} \cdot \frac{1}{16} \cdot \frac{1}{16}\right) \\
& =\frac{3}{2^{10}}+\frac{1}{2^{12}} \\
& =\frac{13}{2^{12}}
\end{aligned}
$$

17. The negation of the Boolean expression $((\sim q) \wedge p) \Rightarrow((\sim p) \vee q)$ is logically equivalent to :
(A) $p \Rightarrow q$
(B) $q \Rightarrow p$
(C) $\sim(p \Rightarrow q)$
(D) $\sim(q \Rightarrow p)$

Answer (C)

Sol. Let $S:((\sim q) \wedge p) \Rightarrow((\sim p) \vee q)$
$\Rightarrow S: \sim((\sim q) \wedge p) \vee((\sim p) \vee q)$
$\Rightarrow S:(q \vee(\sim p)) \vee((\sim p) \vee q)$
$\Rightarrow S:(\sim p) \vee q$
$\Rightarrow S: p \Rightarrow q$
So, negation of S will be $\sim(p \Rightarrow q)$
18. If the line $y=4+k x, k>0$, is the tangent to the parabola $y=x-x^{2}$ at the point P and V is the vertex of the parabola, then the slope of the line through P and V is :
(A) $\frac{3}{2}$
(B) $\frac{26}{9}$
(C) $\frac{5}{2}$
(D) $\frac{23}{6}$

Answer (C)
Sol. \because Line $y=k x+4$ touches the parabola $y=x-x^{2}$.
So, $k x+4=x-x^{2} \Rightarrow x^{2}+(k-1) x+4=0$ has only one root
$(k-1)^{2}=16 \Rightarrow k=5$ or -3 but $k>0$
So, $k=5$.
And hence $x^{2}+4 x+4=0 \Rightarrow x=-2$

So, $P(-2,-6)$ and V is $\left(\frac{1}{2}, \frac{1}{4}\right)$
Slope of $P V=\frac{\frac{1}{4}+6}{\frac{1}{2}+2}=\frac{5}{2}$
19. The value of $\tan ^{-1}\left(\frac{\cos \left(\frac{15 \pi}{4}\right)-1}{\sin \left(\frac{\pi}{4}\right)}\right)$ is equal to :
(A) $-\frac{\pi}{4}$
(B) $-\frac{\pi}{8}$
(C) $-\frac{5 \pi}{12}$
(D) $-\frac{4 \pi}{9}$

Answer (B)

Sol. $\tan ^{-1}\left(\frac{\cos \left(\frac{15 \pi}{4}\right)-1}{\sin \frac{\pi}{4}}\right)$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\frac{1}{\sqrt{2}}-1}{\frac{1}{\sqrt{2}}}\right) \\
& =\tan ^{-1}(1-\sqrt{2})=-\tan ^{-1}(\sqrt{2}-1) \\
& =-\frac{\pi}{8}
\end{aligned}
$$

20. The line $y=x+1$ meets the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ at two points P and Q. If r is the radius of the circle with $P Q$ as diameter then $(3 r)^{2}$ is equal to :
(A) 20
(B) 12
(C) 11
(D) 8

Answer (A)

Sol. Let point $(a, a+1)$ as the point of intersection of line and ellipse.
So, $\frac{a^{2}}{4}+\frac{(a+1)^{2}}{2}=1 \Rightarrow a^{2}+2\left(a^{2}+2 a+1\right)=4$
$\Rightarrow 3 a^{2}+4 a-2=0$
If roots of this equation are α and β.
So, $P(\alpha, \alpha+1)$ and $Q(\beta, \beta+1)$
$P Q^{2}=4 r^{2}=(\alpha-\beta)^{2}+(\alpha-\beta)^{2}$
$\Rightarrow 9 r^{2}=\frac{9}{4}\left(2(\alpha-\beta)^{2}\right)$

$$
\begin{aligned}
& =\frac{9}{2}\left[(\alpha+\beta)^{2}-4 \alpha \beta\right] \\
& =\frac{9}{2}\left[\left(-\frac{4}{3}\right)^{2}+\frac{8}{3}\right] \\
& =\frac{1}{2}[16+24]=20
\end{aligned}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Let $A=\left(\begin{array}{ll}2 & -2 \\ 1 & -1\end{array}\right)$ and $B=\left(\begin{array}{ll}-1 & 2 \\ -1 & 2\end{array}\right)$. Then the number of elements in the set $\{(n, m): n, m \in\{1$, $2 \ldots \ldots \ldots ., 10\}$ and $n A^{n}+m B^{m}=\AA$ is \qquad .

Answer (1)
Sol. $A^{2}=\left[\begin{array}{ll}2 & -2 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}2 & -2 \\ 1 & -1\end{array}\right]$

$$
=\left[\begin{array}{ll}
2 & -2 \\
1 & -1
\end{array}\right]=A \quad \Rightarrow A^{K}=A, K \in I
$$

$B^{2}=\left[\begin{array}{ll}-1 & 2 \\ -1 & 2\end{array}\right]\left[\begin{array}{ll}-1 & 2 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}-1 & 2 \\ -1 & 2\end{array}\right]=B$
So, $B^{K}=B, K \in I$
$n A^{n}+m B^{m}=n A+m B$
$=\left[\begin{array}{c}2 n-2 n \\ n-n\end{array}\right]+\left[\begin{array}{ll}-m & 2 m \\ -m & 2 m\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
So, $2 n-m=1,-n+m=0,2 m-n=1$
So, $(m, n)=(1,1)$
2. Let $f(x)=\left[2 x^{2}+1\right]$ and $g(x)=\left\{\begin{array}{ll}2 x-3, & x<0 \\ 2 x+3, & x \geq 0\end{array}\right.$, where $[t]$ is the greatest integer $\leq t$. Then, in the open interval $(-1,1)$, the number of points where fog is discontinuous is equal to \qquad -
Answer (62)

Sol. $f\left(g(x)= \begin{cases}{\left[2(2 x-3)^{2}\right]+1,} & x<0 \\ {\left[2(2 x+3)^{2}\right]+1,} & x \geq 0\end{cases}\right.$
The possible points where $f \circ g(x)$ may be discontinuous are
$2(2 x-3)^{2} \in I \& x \in(-1,0)$
$2(2 x+3)^{2} \in I \& x \in[0,1)$
$\begin{array}{ll}x \in(-1,0) & x \in[0,1) \\ 2 x-3 \in(-5,-3) & 2 x+3 \in[3,5) \\ 2(2 x-3)^{2} \in(18,50) & 2(2 x+3)^{2} \in[18,50)\end{array}$
So, no. of points $=31$ It is discontinuous at all points except $x=0$ of no. points $=31$

So, total $=62$
3. The value of $b>3$ for which $12 \int_{3}^{b} \frac{1}{\left(x^{2}-1\right)\left(x^{2}-4\right)} d x$ $=\log _{e}\left(\frac{49}{40}\right)$, is equal to

Answer (6)

Sol. $I=\int \frac{1}{\left(x^{2}-1\right)\left(x^{2}-4\right)} d x=\frac{1}{3} \int\left(\frac{1}{x^{2}-4}-\frac{1}{x^{2}-1}\right) d x$
$=\frac{1}{3}\left(\frac{1}{4} \ln \left|\frac{x-2}{x+2}\right|-\frac{1}{2} \ln \left|\frac{x-1}{x+1}\right|\right)+C$
$12 I=\ln \left|\frac{x-2}{x+2}\right|-2 \ln \left|\frac{x-1}{x+1}\right|+C$
$12 \int_{3}^{b} \frac{d x}{\left(x^{2}-4\right)\left(x^{2}-1\right)}$
$=\ln \left(\frac{b-2}{b+2}\right)-2 \ln \left(\frac{b-1}{b+1}\right)-\left(\ln \left(\frac{1}{5}\right)-2 \ln \left(\frac{1}{2}\right)\right)$
$=\ln \left(\left(\frac{b-2}{b+2}\right) \cdot \frac{(b+1)^{2}}{(b-1)^{2}}\right)-\left(\ln \frac{4}{5}\right)$
So, $\frac{49}{40}=\frac{(b-2)}{(b+2)} \frac{(b+1)^{2}}{(b-1)^{2}} \cdot \frac{5}{4}$
$\Rightarrow b=6$
4. If the sum of the co-efficients of all the positive even powers of x in the binomial expansion of $\left(2 x^{3}+\frac{3}{x}\right)^{10}$ is $5^{10}-\beta \cdot 3^{9}$, the β is equal to \qquad -
Answer (83)

Sol. $T_{r+1}=10_{C_{r}}\left(2 x^{3}\right)^{10-r}\left(\frac{3}{x}\right)^{r}$
$=10_{C_{r}} 2^{10-r} 3^{r} x^{30-4 r}$
So, $r \neq 8,9,10$
Sum of required Coeff. $=\left(2.1^{3}+\frac{3}{1}\right)^{10}$
$\left({ }^{10} C_{8} 2^{2} 3^{8}+{ }^{10} C_{9} 2^{1} 3^{9}+{ }^{10} C_{10} 2^{0} 3^{10}\right)$
$=5^{10}-3^{9}\left(\frac{{ }^{10} C_{8} \cdot 2^{2}}{3}+{ }^{10} C_{9} \cdot 2^{1}+{ }^{10} C_{10} \cdot 3\right)$
$\beta=\frac{4}{3} \cdot{ }^{10} C_{8}+20+3=83$
5. If the mean deviation about the mean of the numbers $1,2,3, \ldots . n$, where n is odd, is $\frac{5(n+1)}{n}$, then n is equal to \qquad .

Answer (21)

Sol. Mean $=\frac{n \frac{(n+1)}{2}}{n}=\frac{n+1}{2}$
M.D. $=\frac{2\left(\frac{n-1}{2}+\frac{n-3}{2}+\frac{n-5}{2}+\ldots 0\right)}{n}=\frac{5(n+1)}{n}$
$\Rightarrow((n-1)+(n-3)+(n-5)+\ldots 0)=5(n+1)$
$\Rightarrow\left(\frac{n+1}{4}\right) \cdot(n-1)=5(n+1)$
So, $n=21$
6. Let $\vec{b}=\hat{i}+\hat{j}+\lambda \hat{k}, \lambda \in \mathbb{R}$. If \vec{a} is a vector such that $\vec{a} \times \vec{b}=13 \hat{i}-\hat{j}-4 \hat{k} \quad$ and $\quad \vec{a} \cdot \vec{b}+21=0, \quad$ then $(\vec{b}-\vec{a}) \cdot(\hat{k}-\hat{j})+(\vec{b}+\vec{a}) \cdot(\hat{i}-\hat{k})$ is equal to

Answer (14)

Sol. Let $\vec{a}=x \hat{i}=y \hat{j}+z \hat{k}$
So, $\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 1 & \lambda\end{array}\right|=\hat{i}(\lambda y-z)+\hat{j}(z-\lambda x)+\hat{k}(x-y)$
$\Rightarrow \lambda y-z=13, z-\lambda x=-1, x-y=-4$
and $x+y+\lambda z=-21$
\Rightarrow clearly, $\lambda=3, x=-2, y=2$ and $z=-7$

So, $\vec{b}-\vec{a}=3 \hat{i}-\hat{j}+10 \hat{k}$
and $\vec{b}+\vec{a}=-\hat{i}+3 \hat{j}-4 \hat{k}$
$\Rightarrow(\vec{b}-\vec{a}) \cdot(\hat{k}-\hat{j})+(\vec{b}+\vec{a}) \cdot(\hat{i}-\hat{k})=11+3=14$
7. The total number of three-digit numbers, with one digit repeated exactly two times, is \qquad .

Answer (243)

Sol. C-1 : All digits are non-zero
${ }^{9} C_{2} \cdot 2 \cdot \frac{3!}{2}=216$
$\mathrm{C}-2$: One digit is 0
$0,0, x \Rightarrow{ }^{9} C_{1} \cdot 1=9$
$0, x, x \Rightarrow{ }^{9} C_{1} \cdot 2=18$
Total $=216+27=243$
8. Let $f(x)=\left|(x-1)\left(x^{2}-2 x-3\right)\right|+x-3, x \in R$. If m and M are respectively the number of points of local minimum and local maximum of f in the interval $(0,4)$, then $m+M$ is equal to

Answer (3)

Sol. $f(x)=|(x-1)(x+1)(x-3)|+(x-3)$
$f(x)=\left\{\begin{array}{cc}(x-3)\left(x^{2}\right) & 3 \leq x \leq 4 \\ (x-3)\left(2-x^{2}\right) & 1 \leq x<3 \\ (x-3)\left(x^{2}\right) & 0<x<1\end{array}\right.$
$f^{\prime}(x)=\left\{\begin{array}{cc}3 x^{2}-6 x & 3<x<4 \\ -3 x^{2}+6 x+2 & 1<x<3 \\ 3 x^{2}-6 x & 0<x<1\end{array}\right.$
$f^{\prime}\left(3^{+}\right)>0 \quad f^{\prime}\left(3^{-}\right)<0 \rightarrow$ Minimum
$f^{\prime}\left(1^{+}\right)>0 \quad f^{\prime}\left(1^{-}\right)<0 \rightarrow$ Minimum
$x \in(1,3) f^{\prime}(x)=0$ at one point \rightarrow Maximum
$x \in(3,4) \quad f^{\prime}(x) \neq 0$
$x \in(0,1) \quad f^{\prime}(x) \neq 0$
So, 3 points
9. Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be $\frac{5}{4}$. If the equation of the normal at the point $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ on the hyperbola is $8 \sqrt{5} x+\beta y=\lambda$, then $\lambda-\beta$ is equal to \qquad -

Answer (85)

Sol. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad\left(e=\frac{5}{4}\right)$
So, $b^{2}=a^{2}\left(\frac{25}{16}-1\right) \Rightarrow b=\frac{3}{4} a$
Also $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ lies on the given hyperbola
So, $\frac{64}{5 a^{2}}-\frac{144}{25\left(\frac{9 a^{2}}{16}\right)}=1 \Rightarrow a=\frac{8}{5}$ and $b=\frac{6}{5}$
Equation of normal

$$
\frac{64}{25}\left(\frac{x}{8 / \sqrt{5}}\right)+\frac{36}{25}\left(\frac{y}{12 / 5}\right)=4
$$

$\Rightarrow \frac{8}{5 \sqrt{5}} x+\frac{3}{5} y=4$
$\Rightarrow 8 \sqrt{5} x+15 y=100$
So, $\beta=15$ and $\lambda=100$
Gives $\lambda-\beta=85$
10. Let $/ f$ be the line in $x y$-plane with x and y intercepts $\frac{1}{8}$ and $\frac{1}{4 \sqrt{2}}$ respectively and l_{2} be the line in $z x$-plane with x and z intercepts $-\frac{1}{8}$ and $-\frac{1}{6 \sqrt{3}}$ respectively. If d is the shortest distance between the line h and k, then d^{-2} is equal to \qquad .
Answer (51)
Sol. $\frac{x-\frac{1}{8}}{\frac{1}{8}}=\frac{y}{-\frac{1}{4 \sqrt{2}}}=\frac{z}{0}$ \qquad L_{1}
or $\frac{x-\frac{1}{8}}{1}=\frac{y}{-\sqrt{2}}=\frac{z}{0}$
Equation of L_{2}
$\frac{x+\frac{1}{8}}{-6 \sqrt{3}}=\frac{y}{0}=\frac{z}{8}$
$d=\left|\frac{(\vec{c}-\vec{a}) \cdot(\vec{b} \times \vec{d})}{|\vec{b} \times \vec{d}|}\right|$
$=\frac{\left(\frac{1}{4} \hat{i}\right) \cdot(4 \sqrt{2} \hat{i}+4 \hat{j}+3 \sqrt{6} \hat{k})}{\sqrt{(4 \sqrt{2})^{2}+4^{2}+(3 \sqrt{6})^{2}}}$
$=\frac{\sqrt{2}}{\sqrt{32+16+54}}=\frac{1}{\sqrt{51}}$
$d^{2}=51$

