MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Let $f(x)=\frac{x-1}{x+1}, x \in \mathrm{R}-\{0,-1,1\}$. If $f^{n+1}(x)=$ $f\left(f^{n}(x)\right)$ for all $n \in \mathbf{N}$, then $f^{6}(6)+f^{7}(7)$ is equal to :
(A) $\frac{7}{6}$
(B) $-\frac{3}{2}$
(C) $\frac{7}{12}$
(D) $-\frac{11}{12}$

Answer (B)

Sol. $f(x)=\frac{x-1}{x+1} \Rightarrow f(f(x))=\frac{\frac{x-1}{x+1}-1}{\frac{x-1}{x+1}+1}=-\frac{1}{x}$
$\Rightarrow f^{3}(x)=-\frac{x+1}{x-1} \Rightarrow f^{4}(x)=-\frac{\frac{x-1}{x+1}+1}{\frac{x-1}{x+1}-1}=x$
So, $f^{6}(6)+f^{7}(7)=f^{2}(6)+f^{3}(7)$
$=-\frac{1}{6}-\frac{7+1}{7-1}=-\frac{9}{6}=-\frac{3}{2}$
2. Let $A=\left\{z \in \mathbf{C}:\left|\frac{z+1}{z-1}\right|<1\right\}$
and $B=\left\{z \in \mathbf{C}: \arg \left(\frac{z-1}{z+1}\right)=\frac{2 \pi}{3}\right\}$.
Then $A \cap B$ is :
(A) A portion of a circle centred at $\left(0,-\frac{1}{\sqrt{3}}\right)$ that lies in the second and third quadrants only
(B) A portion of a circle centred at $\left(0,-\frac{1}{\sqrt{3}}\right)$ that lies in the second quadrant only
(C) An empty set
(D) A portion of a circle of radius $\frac{2}{\sqrt{3}}$ that lies in the third quadrant only
Answer (B)

Sol. $\left|\frac{z+1}{z-1}\right|<1 \Rightarrow|z+1|<|z-1| \Rightarrow \operatorname{Re}(z)<0$
and $\arg \left(\frac{z-1}{z+1}\right)=\frac{2 \pi}{3}$ is a part of circle as shown.

3. Let A be a 3×3 invertible matrix. If $|\operatorname{adj}(24 A)|=\mid a d j$ (3 adj $(2 A)) \mid$, then $|A|^{2}$ is equal to :
(A) 6^{6}
(B) 2^{12}
(C) 2^{6}
(D) 1

Answer (C)
Sol. $|\operatorname{adj}(24 A)|=|\operatorname{adj}(3 \operatorname{adj}(2 A))|$

$$
\begin{aligned}
& \Rightarrow|24 A|^{2}=|3 \operatorname{adj}(2 A)|^{2} \\
& \Rightarrow\left(24^{3}\right)^{2} \cdot|A|^{2}=\left(3^{3}\right)^{2}|\operatorname{adj}(2 A)|^{2} \\
& \Rightarrow 24^{6} \cdot|A|^{2}=3^{6}|2 A|^{4} \\
& \Rightarrow 24^{6}|A|^{2}=3^{6} \cdot\left(2^{3}\right)^{4}|A|^{4} \\
& \Rightarrow|A|^{2}=\frac{24^{6}}{3^{6} \cdot 2^{12}}=\frac{2^{18} \cdot 3^{6}}{3^{6} \cdot 2^{12}}=2^{6}
\end{aligned}
$$

4. The ordered pair (a, b), for which the system of linear equations
$3 x-2 y+z=b$
$5 x-8 y+9 z=3$
$2 x+y+a z=-1$
has no solution, is :
(A) $\left(3, \frac{1}{3}\right)$
(B) $\left(-3, \frac{1}{3}\right)$
(C) $\left(-3,-\frac{1}{3}\right)$
(D) $\left(3,-\frac{1}{3}\right)$

Answer (C)

Sol. $\left|\begin{array}{ccc}3 & -2 & 1 \\ 5 & -8 & 9 \\ 2 & 1 & a\end{array}\right|=0 \Rightarrow-14 a-42=0 \Rightarrow a=-3$
Now 3(equation (1)) - (equation (2)) - 2(equation (3)) is

$$
\begin{aligned}
3(3 x-2 y+z-b)-(5 x-8 y+ & 9 z-3) \\
& -2(2 x+y+a z+1)=0 \\
\Rightarrow-3 b+3-2=0 \Rightarrow b= & \frac{1}{3}
\end{aligned}
$$

So for no solution $a=-3$ and $b \neq \frac{1}{3}$
5. The remainder when $(2021)^{2023}$ is divided by 7 is :
(A) 1
(B) 2
(C) 5
(D) 6

Answer (C)

Sol. $2021 \equiv-2(\bmod 7)$

$$
\begin{aligned}
\Rightarrow(2021)^{2023} & \equiv-(2)^{2023}(\bmod 7) \\
& \equiv-2(8)^{674}(\bmod 7) \\
& \equiv-2(1)^{674}(\bmod 7) \\
& \equiv-2(\bmod 7) \\
& \equiv 5(\bmod 7)
\end{aligned}
$$

So when (2021) ${ }^{2023}$ is divided by 7 , remainder is 5 .
6. $\lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sin \left(\cos ^{-1} x\right)-x}{1-\tan \left(\cos ^{-1} x\right)}$ is equal to :
(A) $\sqrt{2}$
(B) $-\sqrt{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $-\frac{1}{\sqrt{2}}$

Answer (D)

Sol. $\lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sin \left(\cos ^{-1} x\right)-x}{1-\tan \left(\cos ^{-1} x\right)} \quad$ let $\cos ^{-1} x=\frac{\pi}{4}+\theta$

$$
\begin{aligned}
& =\lim _{\theta \rightarrow 0} \frac{\sin \left(\frac{\pi}{4}+\theta\right)-\cos \left(\frac{\pi}{4}+\theta\right)}{1-\tan \left(\frac{\pi}{4}+\theta\right)} \\
& =\lim _{\theta \rightarrow 0} \frac{\sqrt{2} \sin \left(\frac{\pi}{4}+\theta-\frac{\pi}{4}\right)}{1-\frac{1+\tan \theta}{1-\tan \theta}}
\end{aligned}
$$

$$
=\lim _{\theta \rightarrow 0} \frac{\sqrt{2} \sin \theta}{-2 \tan \theta}(1-\tan \theta)=-\frac{1}{\sqrt{2}}
$$

7. $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be two real valued functions defined as $f(x)=\left\{\begin{array}{cc}-|x+3|, & x<0 \\ e^{x}, & x \geq 0\end{array}\right.$ and $g(x)=\left\{\begin{array}{ll}x^{2}+k_{1} x, & x<0 \\ 4 x+k_{2}, & x \geq 0\end{array}\right.$, where k_{1} and k_{2} are real constants. If ($g \circ f$) is differentiable at $x=0$, then $(g \circ f)(-4)+(g \circ f)(4)$ is equal to :
(A) $4\left(e^{4}+1\right)$
(B) $2\left(2 e^{4}+1\right)$
(C) $4 e^{4}$
(D) $2\left(2 e^{4}-1\right)$

Answer (D)

Sol. \because gof is differentiable at $x=0$
So R.H.D = L.H.D

$$
\begin{aligned}
& \frac{d}{d x}\left(4 e^{x}+k_{2}\right)=\frac{d}{d x}\left((-|x+3|)^{2}-k_{1}|x+3|\right) \\
\Rightarrow & 4=6-k_{1} \Rightarrow k_{1}=2
\end{aligned}
$$

Also $g\left(f\left(0^{+}\right)\right)=g\left(f\left(0^{-}\right)\right)$
$\Rightarrow 4+k_{2}=9-3 k_{1} \Rightarrow k_{2}=-1$
Now $g(f(-4))+g(f(4))$

$$
\begin{aligned}
=g(-1)+g\left(e^{4}\right) & =\left(1-k_{1}\right)+\left(4 e^{4}+k_{2}\right) \\
& =4 e^{4}-2 \\
& =2\left(2 e^{4}-1\right)
\end{aligned}
$$

8. The sum of the absolute minimum and the absolute maximum values of the function $f(x)=\left|3 x-x^{2}+2\right|$ $-x$ in the interval $[-1,2]$ is :
(A) $\frac{\sqrt{17}+3}{2}$
(B) $\frac{\sqrt{17}+5}{2}$
(C) 5
(D) $\frac{9-\sqrt{17}}{2}$

Answer (A)

Sol. $f(x)=\left|x^{2}-3 x-2\right|-x \forall x \in[-1,2]$
$\Rightarrow f(x)=\left\{\begin{array}{l}x^{2}-4 x-2 \text { if }-1 \leq x<\frac{3-\sqrt{17}}{2} \\ -x^{2}+2 x+2 \text { if } \frac{3-\sqrt{17}}{2} \leq x \leq 2\end{array}\right.$

$f(x)_{\text {max }}=3$
$f(x)_{\min }=f\left(\frac{3-\sqrt{17}}{2}\right)$
$=\frac{\sqrt{17}-3}{2}$
9. Let S be the set of all the natural numbers, for which the line $\frac{x}{a}+\frac{y}{b}=2$ is a tangent to the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ at the point $(a, b), a b \neq 0$. Then :
(A) $S=\phi$
(B) $n(S)=1$
(C) $S=\{2 k: k \in \mathbf{N}\}$
(D) $S=\mathbf{N}$

Answer (D)

Sol. $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$
$\Rightarrow \frac{n}{a}\left(\frac{x}{a}\right)^{n-1}+\frac{n}{b}\left(\frac{y}{b}\right)^{n-1} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=-\frac{b}{a}\left(\frac{b x}{a y}\right)^{n-1}$
$\Rightarrow \frac{d y}{d x}(a, b)=-\frac{b}{a}$
So line always touches the given curve.
10. The area bounded by the curve $y=\left|x^{2}-9\right|$ and the line $y=3$ is
(A) $4(2 \sqrt{3}+\sqrt{6}-4)$
(B) $4(4 \sqrt{3}+\sqrt{6}-4)$
(C) $8(4 \sqrt{3}+3 \sqrt{6}-9)$
(D) $8(4 \sqrt{3}+\sqrt{6}-9)$

Answer (*)

Sol. $y=3$ and $y=\left|x^{2}-9\right|$
Intersect in first quadrant at $x=\sqrt{6}$ and $x=\sqrt{12}$

Required area

$$
\begin{aligned}
& =2\left[\frac{2}{3}(6 \times \sqrt{6})+\int_{\sqrt{6}}^{3}\left(3-\left(9-x^{2}\right)\right) d x+\int_{3}^{\sqrt{12}}\left(3-\left(x^{2}-9\right)\right) d x\right] \\
& =2\left[4 \sqrt{6}+\left.\left(\frac{x^{3}}{3}-6 x\right)\right|_{\sqrt{6}} ^{3}+\left.\left(12 x-\frac{x^{3}}{3}\right)\right|_{3} ^{\sqrt{12}}\right] \\
& =2[4 \sqrt{6}+(4 \sqrt{6}-9)+(8 \sqrt{12}-27)] \\
& =2[8 \sqrt{6}+16 \sqrt{3}-36]=8[2 \sqrt{6}+4 \sqrt{3}-9]
\end{aligned}
$$

11. Let R be the point $(3,7)$ and let P and Q be two points on the line $x+y=5$ such that $P Q R$ is an equilateral triangle, Then the area of $\triangle P Q R$ is :
(A) $\frac{25}{4 \sqrt{3}}$
(B) $\frac{25 \sqrt{3}}{2}$
(C) $\frac{25}{\sqrt{3}}$
(D) $\frac{25}{2 \sqrt{3}}$

Answer (D)

Sol.

Altitude of equilateral triangle,
$\frac{\sqrt{3} 1}{2}=\frac{5}{\sqrt{2}}$
$I=\frac{5 \sqrt{2}}{\sqrt{3}}$
Area of triangle $=\frac{\sqrt{3}}{4} I^{2}=\frac{\sqrt{3}}{4} \cdot \frac{50}{3}=\frac{25}{2 \sqrt{3}}$
12. Let C be a circle passing through the points $A(2,-1)$ and $B(3,4)$. The line segment $A B$ is not a diameter of C. If r is the radius of C and its centre lies on the circle $(x-5)^{2}+(y-1)^{2}=\frac{13}{2}$, then r^{2} is equal to :
(A) 32
(B) $\frac{65}{2}$
(C) $\frac{61}{2}$
(D) 30

Answer (B)

Sol. Equation of perpendicular bisector of $A B$ is

$$
y-\frac{3}{2}=-\frac{1}{5}\left(x-\frac{5}{2}\right) \Rightarrow x+5 y=10
$$

Solving it with equation of given circle,

$$
\begin{aligned}
& (x-5)^{2}+\left(\frac{10-x}{5}-1\right)^{2}=\frac{13}{2} \\
\Rightarrow & (x-5)^{2}\left(1+\frac{1}{25}\right)=\frac{13}{2} \\
\Rightarrow & x-5= \pm \frac{5}{2} \Rightarrow x=\frac{5}{2} \text { or } \frac{15}{2}
\end{aligned}
$$

But $x \neq \frac{5}{2}$ because $A B$ is not the diameter.
So, centre will be $\left(\frac{15}{2}, \frac{1}{2}\right)$
Now $r^{2}=\left(\frac{15}{2}-2\right)^{2}+\left(\frac{1}{2}+1\right)^{2}$

$$
=\frac{65}{2}
$$

13. Let the normal at the point P on the parabola $y^{2}=6 x$ pass through the point $(5,-8)$. If the tangent at P to the parabola intersects its directrix at the point Q, then the ordinate of the point Q is :
(A) -3
(B) $-\frac{9}{4}$
(C) $-\frac{5}{2}$
(D) -2

Answer (B)

Sol. Let $P\left(a t^{2}, 2 a t\right)$ where $a=\frac{3}{2}$
$T: y t=x+a t^{2}$ So point Q is $\left(-a, a t-\frac{a}{t}\right)$
$N: y=-t x+2 a t+a t^{3}$ passes through $(5,-8)$

$$
-8=-5 t+3 t+\frac{3}{2} t^{3}
$$

$\Rightarrow 3 t^{3}-4 t+16=0$
$\Rightarrow(t+2)\left(3 t^{2}-6 t+8\right)=0$
$\Rightarrow t=-2$
So ordinate of point Q is $-\frac{9}{4}$.
14. If the two lines $I_{1}: \frac{x-2}{3}=\frac{y+1}{-2}, z=2$ and $I_{2}: \frac{x-1}{1}=\frac{2 y+3}{\alpha}=\frac{z+5}{2}$ are perpendicular, then an angle between the lines $1 / 2$ and $I_{3}: \frac{1-x}{3}=\frac{2 y-1}{-4}=\frac{z}{4}$ is :
(A) $\cos ^{-1}\left(\frac{29}{4}\right)$
(B) $\sec ^{-1}\left(\frac{29}{4}\right)$
(C) $\cos ^{-1}\left(\frac{2}{29}\right)$
(D) $\cos ^{-1}\left(\frac{2}{\sqrt{29}}\right)$

Answer (B)

Sol. $\because \quad L_{1}$ and L_{2} are perpendicular, so

$$
\begin{aligned}
& 3 \times 1+(-2)\left(\frac{\alpha}{2}\right)+0 \times 2=0 \\
\Rightarrow & \alpha=3
\end{aligned}
$$

Now angle between l_{2} and l_{3},

$$
\begin{aligned}
\cos \theta & =\frac{1(-3)+\frac{\alpha}{2}(-2)+2(4)}{\sqrt{1+\frac{\alpha^{2}}{4}+4 \sqrt{9+4+16}}} \\
\Rightarrow \cos \theta & =\frac{2}{\frac{29}{2}} \Rightarrow \theta=\cos ^{-1}\left(\frac{4}{29}\right)=\sec ^{-1}\left(\frac{29}{4}\right)
\end{aligned}
$$

15. Let the plane $2 x+3 y+z+20=0$ be rotated through a right angle about its line of intersection with the plane $x-3 y+5 z=8$. If the mirror image of the point $\left(2,-\frac{1}{2}, 2\right)$ in the rotated plane is $B(a, b, c)$, then :
(A) $\frac{a}{8}=\frac{b}{5}=\frac{c}{-4}$
(B) $\frac{a}{4}=\frac{b}{5}=\frac{c}{-2}$
(C) $\frac{a}{8}=\frac{b}{-5}=\frac{c}{4}$
(D) $\frac{a}{4}=\frac{b}{5}=\frac{c}{2}$

Answer (A)

Sol. Consider the equation of plane,
$P:(2 x+3 y+z+20)+\lambda(x-3 y+5 z-8)=0$
$P:(2+\lambda) x+(3-3 \lambda) y+(1+5 \lambda) z+(20-8 \lambda)=0$
\because Plane P is perpendicular to $2 x+3 y+z+20=0$
So, $4+2 \lambda+9-9 \lambda+1+5 \lambda=0$

$$
\begin{aligned}
& \Rightarrow \lambda=7 \\
& P: 9 x-18 y+36 z-36=0
\end{aligned}
$$

Or $P: x-2 y+4 z=4$

If image of $\left(2,-\frac{1}{2}, 2\right)$ in plane P is (a, b, c) then

$$
\frac{a-2}{1}=\frac{b+\frac{1}{2}}{-2}=\frac{c-2}{4}
$$

and $\left(\frac{a+2}{2}\right)-2\left(\frac{b-\frac{1}{2}}{2}\right)+4\left(\frac{c+2}{2}\right)=4$
Clearly $a=\frac{4}{3}, b=\frac{5}{6}$ and $c=-\frac{2}{3}$
So, $a: b: c=8: 5:-4$
16. If $\vec{a} \cdot \vec{b}=1, \vec{b} \cdot \vec{c}=2$ and $\vec{c} \cdot \vec{a}=3$, then the value of
$[\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}), \vec{c} \times(\vec{b} \times \vec{a})]$ is :
(A) 0
(B) $-6 \vec{a} \cdot(\vec{b} \times \vec{c})$
(C) $12 \vec{c} \cdot(\vec{a} \times \vec{b})$
(D) $-12 \vec{b} \cdot(\vec{c} \times \vec{a})$

Answer (A)

Sol. $\because \quad \vec{a} \times(\vec{b} \times \vec{c})=3 \vec{b}-\vec{c}=\vec{u}$

$$
\begin{aligned}
& \vec{b} \times(\vec{c} \times \vec{a})=\vec{c}-2 \vec{a}=\vec{v} \\
& \vec{c} \times(\vec{b} \times \vec{a})=3 \vec{b}-2 \vec{a}=\vec{w} \\
\therefore \quad & \vec{u}+\vec{v}=\vec{w}
\end{aligned}
$$

So vectors \vec{u}, \vec{v} and \vec{w} are coplanar, hence their Scalar triple product will be zero.
17. Let a biased coin be tossed 5 times. If the probability of getting 4 heads is equal to the probability of getting 5 heads, then the probability of getting atmost two heads is:
(A) $\frac{275}{6^{5}}$
(B) $\frac{36}{5^{4}}$
(C) $\frac{181}{5^{5}}$
(D) $\frac{46}{6^{4}}$

Answer (D)

Sol. Let probability of getting head $=p$
So, ${ }^{5} C_{4} p^{4}(1-p)={ }^{5} C_{5} p^{5}$
$\Rightarrow p=5(1-p) \Rightarrow p=\frac{5}{6}$

Probability of getting atmost two heads =
${ }^{5} C_{0}(1-p)^{5}+{ }^{5} C_{1} p(1-p)^{4}+{ }^{5} C_{2} p^{2}(1-p)^{3}$
$=\frac{1+25+250}{6^{5}}$
$=\frac{276}{6^{5}}=\frac{46}{6^{4}}$
18. The mean of the numbers $a, b, 8,5,10$ is 6 and their variance is 6.8 . If M is the mean deviation of the numbers about the mean, then 25 M is equal to:
(A) 60
(B) 55
(C) 50
(D) 45

Answer (A)
Sol. $\because \bar{x}=6=\frac{a+b+8+5+10}{5} \Rightarrow a+b=7 \ldots$ (i)
And $\sigma^{2}=\frac{a^{2}+b^{2}+8^{2}+5^{2}+10^{2}}{5}-6^{2}=6.8$
$\Rightarrow a^{2}+b^{2}=25$
From (i) and (ii) $(a, b)=(3,4)$ or $(4,3)$
Now mean deviation about mean

$$
\begin{aligned}
& M=\frac{1}{5}(3+2+2+1+4)=\frac{12}{5} \\
\Rightarrow & 25 M=60
\end{aligned}
$$

19. Let $f(x)=2 \cos ^{-1} x+4 \cot ^{-1} x-3 x^{2}-2 x+10, x \in[-1,1]$, If $[a, b]$ is the range of the function, f then $4 a-b$ is equal to :
(A) 11
(B) $11-\pi$
(C) $11+\pi$
(D) $15-\pi$

Answer (B)

Sol. $f(x)=2 \cos ^{-1} x+4 \cot ^{-1} x-3 x^{2}-2 x+10 \forall x \in[-1,1]$
$\Rightarrow f^{\prime}(x)=-\frac{2}{\sqrt{1-x^{2}}}-\frac{4}{1+x^{2}}-6 x-2<0 \quad \forall x \in[-1,1]$
So $f(x)$ is decreasing function and range of $f(x)$ is $[f(1), f(-1)]$, which is $[\pi+5,5 \pi+9]$

Now $4 a-b=4(\pi+5)-(5 \pi+9)$
$=11-\pi$
20. Let $\Delta, \nabla \in\{\wedge, v\}$ be such that $p \nabla q \Rightarrow((p \Delta q) \nabla r)$ is a tautology. Then $(p \nabla q) \Delta r$ is logically equivalent to :
(A) $(p \Delta r) \vee q$
(B) $(p \Delta r) \wedge q$
(C) $(p \wedge r) \Delta q$
(D) $(p \nabla r) \wedge q$

Answer (A)

Sol. Case-I

If ∇ is same as \wedge
Then $(p \wedge q) \Rightarrow((p \Delta q) \wedge r)$ is equivalent to $\sim(p \wedge q) \vee$ $((p \Delta q) \wedge r)$ is equivalent to $(\sim(p \wedge q) \vee(p \Delta q)) \wedge(\sim(p \wedge$ q) $\vee r)$

Which cannot be a tautology
For both $\Delta($ i.e. \vee or $\wedge)$

Case-II

If ∇ is same as v
Then $(p \vee q) \Rightarrow((p \Delta q) \vee r)$ is equivalent to
$\sim(p \vee q) \vee(p \Delta q) \vee r$ which can be a tautology if Δ is also same as \vee.
Hence both Δ and ∇ are same as v.
Now $(p \nabla q) \Delta r$ is equivalent to $(p \vee q \vee r)$.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. The sum of the cubes of all the roots of the equation $x^{4}-3 x^{3}-2 x^{2}+3 x+1=0$ is \qquad .

Answer (36)

Sol. $x^{4}-3 x^{3}-x^{2}-x^{2}+3 x+1=0$

$$
\left(x^{2}-1\right)\left(x^{2}-3 x-1\right)=0
$$

Let the root of $x^{2}-3 x-1=0$ be α and β and other two roots of given equation are 1 and -1
So sum of cubes of roots $=1^{3}+(-1)^{3}+\alpha^{3}+\beta^{3}$

$$
\begin{aligned}
& =(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \\
& =(3)^{3}-3(-1)(3) \\
& =36
\end{aligned}
$$

2. There are ten boys $B_{1}, B_{2}, \ldots, B_{10}$ and five girls G_{1}, G_{2}, \ldots, G_{5} in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B_{1} and B_{2} together should not be the members of a group, is \qquad -.

Answer (1120)

Sol. Required number of ways = Total ways of selection - ways in which B_{1} and B_{2} are present together.

$$
\begin{aligned}
={ }^{10} C_{3} \cdot{ }^{5} C_{3}-{ }^{8} C_{1} \cdot{ }^{5} C_{3} & =10(120-8) \\
& =1120
\end{aligned}
$$

3. Let the common tangents to the curves $4\left(x^{2}+y^{2}\right)=9$ and $y^{2}=4 x$ intersect at the point Q. Let an ellipse, centered at the origin O, has lengths of semi-minor and semi-major axes equal to $O Q$ and 6 , respectively. If e and $/$ respectively denote the eccentricity and the length of the latus rectum of this ellipse, then $\frac{l}{e^{2}}$ is equal to \qquad .

Answer (4)

Sol. Let $y=m x+c$ is the common tangent
So $c=\frac{1}{m}= \pm \frac{3}{2} \sqrt{1+m^{2}} \Rightarrow m^{2}=\frac{1}{3}$
So equation of common tangents will be $y= \pm \frac{1}{\sqrt{3}} x \pm \sqrt{3}$, which intersects at $Q(-3,0)$
Major axis and minor axis of ellipse are 12 and 6. So eccentricity
$e^{2}=1-\frac{1}{4}=\frac{3}{4}$ and length of latus rectum $=\frac{2 b^{2}}{a}=3$
Hence $\frac{\ell}{e^{2}}=\frac{3}{3 / 4}=4$
4. Let $f(x)=\max \{|x+1|,|x+2|, \ldots \ldots . .,|x+5|\}$. Then $\int_{-6}^{0} f(x) d x$ is equal to \qquad .

Answer (21)

Sol.

$$
\int_{-6}^{0} f(x) d x=2\left[\frac{1}{2}(2+5) 3\right]=21
$$

5. Let the solution curve $y=y(x)$ of the differential equation $\left(4+x^{2}\right) d y-2 x\left(x^{2}+3 y+4\right) d x=0$ pass through the origin. Then $y(2)$ is equal to \qquad .

Answer (12)

Sol. $\left(4+x^{2}\right) d y-2 x\left(x^{2}+3 y+4\right) d x=0$
$\Rightarrow \frac{d y}{d x}=\left(\frac{6 x}{x^{2}+4}\right) y+2 x$
$\Rightarrow \frac{d y}{d x}-\left(\frac{6 x}{x^{2}+4}\right) y=2 x$
I.F. $=e^{-3 \ln \left(x^{2}+4\right)}=\frac{1}{\left(x^{2}+4\right)^{3}}$

So $\frac{y}{\left(x^{2}+4\right)^{3}}=\int \frac{2 x}{\left(x^{2}+4\right)^{3}} d x+c$
$\Rightarrow \quad y=-\frac{1}{2}\left(x^{2}+4\right)+c\left(x^{2}+4\right)^{3}$
When $x=0, y=0$ gives $c=\frac{1}{32}$,
So, for $x=2, y=12$
6. If $\sin ^{2}\left(10^{\circ}\right) \sin \left(20^{\circ}\right) \sin \left(40^{\circ}\right) \sin \left(50^{\circ}\right) \sin \left(70^{\circ}\right)$ $=\alpha-\frac{1}{16} \sin \left(10^{\circ}\right)$, then $16+\alpha^{-1}$ is equal to
\qquad .

Answer (80)

Sol: $\left(\sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ}\right) \cdot\left(\sin 10^{\circ} \cdot \sin 20^{\circ} \cdot \sin 40^{\circ}\right)$

$$
\begin{aligned}
& =\left(\frac{1}{4} \sin 30^{\circ}\right) \cdot\left[\frac{1}{2} \sin 10^{\circ}\left(\cos 20^{\circ}-\cos 60^{\circ}\right)\right] \\
& =\frac{1}{16}\left[\sin 10^{\circ}\left(\cos 20^{\circ}-\frac{1}{2}\right)\right] \\
& =\frac{1}{32}\left[2 \sin 10^{\circ} \cdot \cos 20^{\circ}-\sin 10^{\circ}\right] \\
& =\frac{1}{32}\left[\sin 30^{\circ}-\sin 10^{\circ}-\sin 10^{\circ}\right] \\
& =\frac{1}{64}-\frac{1}{16} \sin 10^{\circ}
\end{aligned}
$$

Clearly $\alpha=\frac{1}{64}$
Hence $16+\alpha^{-1}=80$
7. Let $A=\{n \in \mathbf{N}:$ H.C.F. $(n, 45)=1\}$ and

Let $B=\{2 k: k \in\{1,2, \ldots, 100\}\}$. Then the sum of all the elements of $A \cap B$ is \qquad .

Answer (5264)

Sol: Sum of all elements of $A \cap B=2$ [Sum of natural numbers upto 100 which are neither divisible by 3 nor by 5]

$$
\begin{aligned}
& =2\left[\frac{100 \times 101}{2}-3\left(\frac{33 \times 34}{2}\right)-5\left(\frac{20 \times 21}{2}\right)+15\left(\frac{6 \times 7}{2}\right)\right] \\
& =10100-3366-2100+630 \\
& =5264
\end{aligned}
$$

8. The value of the integral
$\frac{48}{\pi^{4}} \int_{0}^{\pi}\left(\frac{3 \pi x^{2}}{2}-x^{3}\right) \frac{\sin x}{1+\cos ^{2} x} d x$ is equal to
\qquad .

Answer (6)

Sol: $I=\frac{48}{\pi^{4}} \int_{0}^{\pi}\left[\left(\frac{\pi}{2}-x\right)^{3}-\frac{3 \pi^{2}}{4}\left(\frac{\pi}{2}-x\right)+\frac{\pi^{3}}{4}\right] \frac{\sin x d x}{1+\cos ^{2} x}$
Using $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ we get

$$
I=\frac{48}{\pi^{4}} \int_{0}^{\pi}\left[-\left(\frac{\pi}{2}-x\right)^{3}+\frac{3 \pi^{2}}{4}\left(\frac{\pi}{2}-x\right)+\frac{\pi^{3}}{4}\right] \frac{\sin x d x}{1+\cos ^{2} x}
$$

Adding these two equations, we get

$$
\begin{aligned}
& 2 I=\frac{48}{\pi^{4}} \int_{0}^{\pi} \frac{\pi^{3}}{2} \cdot \frac{\sin x d x}{1+\cos ^{2} x} \\
\Rightarrow \quad & I=\frac{12}{\pi}\left[-\tan ^{-1}(\cos x)\right]_{0}^{\pi}=\frac{12}{\pi} \cdot \frac{\pi}{2}=6
\end{aligned}
$$

9. Let $A=\sum_{i=1}^{10} \sum_{j=1}^{10} \min \{i, j\}$ and $B=\sum_{i=1}^{10} \sum_{j=1}^{10} \max \{i, j\}$.

Then $A+B$ is equal to \qquad -.

Answer (1100)

Sol: Each element of ordered pair $\{i, j\}$ is either present in A or in B.

So, $A+B=$ Sum of all elements of all ordered pairs
$\{i, \beta\}$ for $1 \leq i \leq 10$ and $1 \leq j \leq 10$
$=20(1+2+3+\ldots+10)$
$=1100$
10. Let $S=(0,2 \pi)-\left\{\frac{\pi}{2}, \frac{3 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}\right\}$. Let $y=y(x), x \in$ S, be the solution curve of the differential equation $\frac{d y}{d x}=\frac{1}{1+\sin 2 x}, y\left(\frac{\pi}{4}\right)=\frac{1}{2}$. If the sum of abscissas of all the points of intersection of the curve $y=y(x)$ with the curve $y=\sqrt{2} \sin x$ is $\frac{k \pi}{12}$, then k is equal to \qquad .

Answer (42)

Sol: $\frac{d y}{d x}=\frac{1}{1+\sin 2 x}$

$$
\begin{aligned}
& \Rightarrow \quad d y=\frac{\sec ^{2} x d x}{(1+\tan x)^{2}} \\
& \Rightarrow \quad y=-\frac{1}{1+\tan x}+c
\end{aligned}
$$

When $x=\frac{\pi}{4}, \quad y=\frac{1}{2}$ gives $c=1$
So $y=\frac{\tan x}{1+\tan x} \Rightarrow y=\frac{\sin x}{\sin x+\cos x}$
Now, $y=\sqrt{2} \sin x \Rightarrow \sin x=0$
or $\sin x+\cos x=\frac{1}{\sqrt{2}}$
$\sin x=0$ gives $x=\pi$ only.
and $\sin x+\cos x=\frac{1}{\sqrt{2}} \Rightarrow \sin \left(x+\frac{\pi}{4}\right)=\frac{1}{2}$
So $x+\frac{\pi}{4}=\frac{5 \pi}{6}$ or $\frac{13 \pi}{6} \Rightarrow x=\frac{7 \pi}{12}$ or $\frac{23 \pi}{12}$
Sum of all solutions $=\pi+\frac{7 \pi}{12}+\frac{23 \pi}{12}=\frac{42 \pi}{12}$
Hence $k=42$.

