

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

 Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : At 10°C, the density of a 5 M solution of KCI [atomic masses of K & CI are 39 & 35.5 g mol^{-1} respectively], is 'x' g ml⁻¹. The solution is cooled to -21° C. The molality of the solution will remain unchanged.

Reason (R) : The molality of a solution does not change with temperature as mass remains unaffected with temperature.

In the light of the above statements, choose the **correct** answer from the options given below.

- (A) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (C) (A) is true but (R) is false.
- (D) (A) is false but (R) is true.

Answer (A)

Sol. Density = 'x' gm ml⁻¹

: molality,
$$m = \frac{5 \times 1000}{[x(1000) - 372.5]} = 7.96$$

≃ 8 m

 $\therefore \Delta T_f = iK_fm$

Assuming complete dissociation of salt (100%)

(Assuming x = 1)

(i = 2)

 $\Delta T_{\rm f} = 2 \times 1.86 \times 8 \simeq 29.76$

Hence, the solution does not freeze at -21° C. This means that molality of the solution won't change as $x \ge 1$.

Statement (II) is also correct as molality is mass dependent and hence, does not change with temperature. However, as solvents are not mentioned, statement (I) can also be incorrect. 2. Based upon VSEPR theory, match the shape (geometry) of the molecules in List-I with the molecules in List-II and select the most appropriate option.

List-I	List-II
(Shape)	(Molecules)
(A) T-shaped	(I) XeF ₄
(B) Trigonal planar	(II) SF4

- (C) Square planar (III) CIF₃
- (D) See-saw (IV) BF₃
- (A) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
- (B) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
- (C) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
- (D) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)

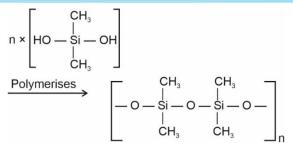
Answer (B)

Sol. (Shape)

(A) T-shaped(III) CIF₃(B) Trigonal planar(IV) BF₃

(Molecules)

- (C) Square planar (I) XeF₄
- (D) See-saw (II) SF₄
- Hence, (B) is the correct option.
- 3. Match List-I with List-II
 - List-l
 - (A) Spontaneous process
 - (B) Process with $\Delta P = 0$, $\Delta T = 0$
 - (C) $\Delta H_{reaction}$
 - (D) Exothermic Process
 - List-II
 - (I) ∆H < 0
 - (II) ∆G_{T,P} < 0
 - (III) Isothermal and isobaric process
 - (IV) [Bond energies of molecules in reactants] –[Bond energies of product molecules]


Choose the **correct** answer from the options given below :

- (A) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)
- (B) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
- (C) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
- (D) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)

JEE (Main)-2022 : Phase-1	(27-06-2022)-Morning			
Answer (B)		(D) Negatively charged (III) FeCl₃ + NaOH		
Sol. Correct match is		colloid (Negatively charged		
(A) Spontaneous	(II) ∆G _{T,P} < 0	colloid is formed due		
process	(Constant	to adsorption of OH⁻		
	temperature and	ions on Fe(OH) ₃)		
	pressure condition)	Hence, the correct option is (A).		
(B) Process with	(III) Isothermal and	5. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason		
$\Delta P = 0, \Delta T = 0$	isobaric process	(R).		
(C) $\Delta H_{reaction}$	(IV) [Bond energies of	Assertion (A) : The ionic radii of O^{2-} and Mg^{2+} are		
	molecules in	same.		
	reactants – bond	Reason (R) : Both O ^{2–} and Mg ²⁺ are isoelectronic species.		
	energies of product	In the light of the above statements, choose the		
	molecules]	correct answer from the options given below.		
(D) Exothermic process	s (I) ∆H < 0	(A) Both (A) and (R) are true and (R) is the correct explanation of (A).		
Hence, the correct optic	on is (B).	(B) Both (A) and (R) are true but (R) is not the		
4. Match List-I with List-II		correct explanation of (A) .		
List-I	List-II	(C) (A) is true but (R) is false.		
(A) Lyophilic colloid	(I) Liquid-liquid colloid	(D) (A) is false but (R) is true.		
(B) Emulsion	(II) Protective colloid	Answer (D)		
(C) Positively charged	(III) FeCl₃ + NaOH	Sol. Correct order of ionic radii:		
colloid		$O^{-2} > Mg^{+2}$		
(D) Negatively charged colloid	(IV) FeCl₃ + hot water	This is because among isoelectronic species, the size of anions are greater than the size of cations. Statement (II) is correct as both O ⁻² and Mg ⁺² are		
Choose the correct ans	swer from the options given	isoelectronic.		
below :		6. Match List-I with List-II.		
(A) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)	List-I List-II		
(B) (A)-(III), (B)-(I), (C)-	(IV), (D)-(II)	(A) Concentration of (I) Aniline		
(C) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)	Gold ore		
(D) (A)-(III), (B)-(II), (C)-	-(I), (D)-(IV)	(B) Leaching of alumina (II) NaOH		
Answer (A)		(C) Froth stabiliser (III) SO ₂		
Sol. Correct match of List-I a	and List-II is:	(D) Blister copper (IV) NaCN		
(A) Lyophilic colloid	(II) Protective colloid	Choose the correct answer from the options given below.		
(B) Emulsion	(I) Liquid-liquid colloid	(A) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)		
(C) Positively charged	(IV) FeCl ₃ + hot water	(B) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)		
colloid	(It forms a positively	(C) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)		
	charged sol of	(D) (A)-(II), (B)-(IV), (C)-(III), (D)-(I)		
	Fe(OH)₃)	Answer (B)		

Aakach					
			se-1 (27-06-2022)-Morning		
Sol. List-I		 (A) (A)-(III), (B)-(II), (C)-(I), (D)-(IV) (B) (A)-(IV), (B)-(I), (C)-(II), (D)-(III) (C) (A)-(II), (B)-(I), (C)-(IV), (D)-(III) (D) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) 			
(A) Concentration of Gold ore	(IV) NaCN				
(B) Leaching of alumir	na (II) NaOH				
(C) Froth stabiliser	(I) Aniline				
	(Aniline and cresols	Answer (D)			
	are used as froth	Sol. List-I	List-II		
	stabilisers in froth	(Si-Compounds)	(Si-Polymeric/other		
(D) Blister copper	floatation process) (III) SO ₂ (During self		Products)		
	reduction process	(A) (CH₃)₄Si	(III) Silane		
	used in the formation of blister copper SO ₂	(B) (CH₃)Si(OH)₃	(IV) 2D-Silicone		
	gas is evolved)	(C) (CH ₃) ₂ Si(OH) ₂	(I) Chain Silicone		
Hence (B) is most appropria	ate option.	(D) (CH ₃) ₃ Si(OH)	(II) Dimeric Silicone		
7. Addition of H_2SO_4 to B	aO ₂ produces:				
(A) BaO, SO ₂ and H ₂ C)	CH ₃			
(B) BaHSO ₄ and O_2		η H — O — Şi — O —	- H Polymerises		
(C) BaSO ₄ , H_2 and O_2					
(D) BaSO ₄ and H_2O_2		Ĭ			
Answer (D)					
Sol. $BaO_2 \cdot 8H_2O + H_2SO_4$					
Hence, the correct opt		-0 - si - 0 - si	— O — Śi — O —		
8. BeCl ₂ reacts with LiAll	-		0		
(A) Be + Li[AICI ₄] + H ₂		 - 0 - Si - 0 - Si			
(B) Be + AlH ₃ + LiCl +					
(C) $BeH_2 + LiCI + AIC$	3	ρρ	oln		
(D) $BeH_2 + Li[AICI_4]$		2D-Silicone			
		CH ₃			
Sol. $BeCl_2 + LiAIH_4 \rightarrow BeH$	2 0	-			
	sing LiAlH ₄ is an important ^r production of hydrides.	$CH_{3} - Si - CH_{3}$			
9. Match List-I with List-					
List-I	List-II	$CH_{3} - Si - CH_{3}$			
(Si-Compounds)	(Si-Polymeric/other	$CH_3 - Si - CH_3$			
(SI-Compounds)	Products)	L CH₃			
(A) (CH ₃) ₄ Si	(I) Chain Silicone				
(B) (CH ₃)Si(OH) ₃	(II) Dimeric Silicone	CH ₃ — Si — CH	H ₃		
(C) $(CH_3)_2Si(OH)_2$	(III) Silane	$\xrightarrow{-H_2O} CH_3$ $\downarrow CH_3 - Si - CH_3$ O $CH_3 - Si - CH_3$ O $CH_3 - Si - CH_3$ $CH_3 - Si - CH_3$			
(C) (CH ₃)₂Si(OH)₂ (D) (CH ₃)₃Si(OH)	(IV) 2D-Silicone	CH. — Si — Cl	H ₃		
	. ,	CH,			
Choose the correct answer from the options given below:		Dimeric Silicon	e		

JEE (Main)-2022 : Phase-1 (27-06-2022)-Morning

- 10. Heating white phosphorus with conc. NaOH solution gives mainly:
 - (A) Na₃P and H₂O
 - (B) H₃PO and NaH
 - (C) P(OH)₃ and NaH₂PO₄
 - (D) PH₃ and NaH₂PO₂

Answer (D)

- **Sol.** P₄(white) + NaOH
 - \rightarrow PH₃ + NaH₂PO₂ + H₂O
- 11. Which of the following will have maximum stabilization due to crystal field?
 - (A) [Ti(H₂O)₆]³⁺ (B) [Co(H₂O)₆]²⁺
 - (C) $[Co(CN)_6]^{-3}$ (D) $[Cu(NH_3)_4]^{24}$

Answer (C)

Sol. The given complexes are:

 $[Ti(H_2O)_6]^{3+}$, $[Co(H_2O)_6]^{2+}$, $[Co(CN)_6]^{-3}$, $[Cu(NH_3)_4]^{2+}$

CN[−] is the strongest ligand among the given complexes CFSE value for the $[Co(CN)_6]^{-3}$ complex will be highest as it has d⁶ configuration with a CFSE value of -2.40 Δ_0 + 2P, where P represents pairing energy and Δ_0 represents splitting energy in octahedral field.

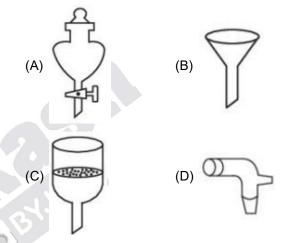
The value of Δ_0 is high for cyanide complexes.

12. Given below are two Statements:

Statement I: Classical smog occurs in cool humid climate. It is a reducing mixture of smoke, fog and sulphur dioxide.

Statement II: Photochemical smog has components, ozone, nitric oxide, acrolein, formaldehyde, PAN etc.

In the light of the above statements, choose the most appropriate answer from the options given below.


- (B) Both **Statement I** and **Statement II** are incorrect.
- (C) Statement I is correct but Statement II is incorrect.
- (D) Statement I is incorrect but Statement II is correct

Answer (A)

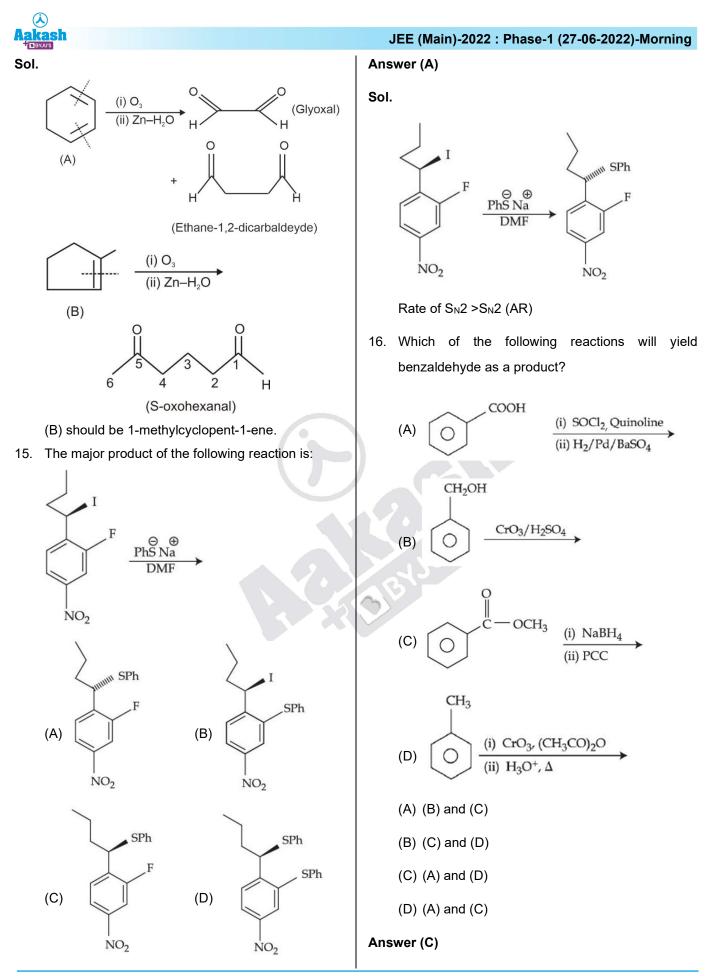
Sol. (I) Classical smog occurs in cool humid climate. It is a reducing mixture of smoke, fog and sulphur dioxide. This is a correct statement.

(II) This statement is also based on fact and is a correct statement.

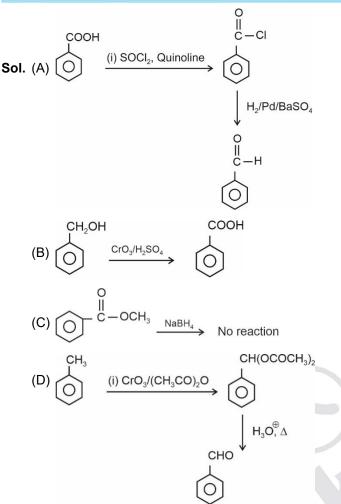
13. Which of the following is structure of a separating funnel?

Answer (A)

- **Sol.** The diagram is option (A) clearly represents separating funnel which is used to separate two immiscible liquids.
- 14. 'A' and 'B' respectively are:


$$A \xrightarrow{(1)O_3} (2)Z_{n-H_2O}$$
 Ethane-1, 2-dicarbaldehyde +

Glyoxal/Oxaldehyde


 $B \xrightarrow{(1)O_3} 5 - oxohexanal$

- (A) 1-methylcyclohex-1, 3-diene & cyclopentene
- (B) Cyclohex-1, 3-diene & cyclopentene
- (C) 1-methylcyclohex-1, 4-diene & 1-methylcyclopent-ene
- (D) Cyclohex-1, 3-diene & 1-methylcyclopent-1ene

Answer (D)

JEE (Main)-2022 : Phase-1 (27-06-2022)-Morning

17. Given below are two statements:

Statement-I: In Hofmann degradation reaction, the migration of only an alkyl group takes place from carbonyl carbon of the amide to the nitrogen atom.

Statement-II: The group is migrated in Hofmann degradation reaction to electron deficient atom.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (A) Both Statement I and Statement II are correct
- (B) Both Statement I and Statement II are incorrect
- (C) Statement I is correct but Statement II is incorrect
- (D) Statement I is incorrect but Statement II is correct

Answer (D)

Sol. Hofmann bromamide degradation

In this degradation, the migration of the alkyl/aryl group occurs to the electron deficient nitrogen (nitrene).

Statement (I) is not absolutely correct as it mentions only the alkyl group, whereas migration of aryl groups may also occur depending on migratory aptitude.

Statement (II) is correct as migration occurs to electron deficient atom.

18. Match List-I with List-II

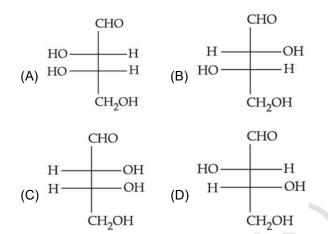
List-I	List-II
(Polymer)	(Used in)
(A) Bakelite	(I) Radio and television
	cabinets
(B) Glyptal	(II) Electrical switches
(C) PVC	(III) Paints and Lacqures
(D) Polystyrene	(IV) Water pipes

Choose the correct answer from the options given below:

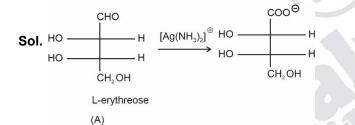
(A)
$$(A) - (II) (B) - (III), (C) - (IV), (D) - (I)$$

(B) $(A) - (I) (B) - (II) (C) - (IU) (D) - (IV)$

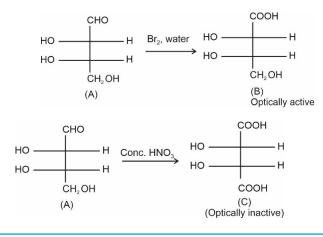
$$(C) (A) - (IV) (B) - (III), (C) - (II), (D) - (I)$$


(D) (A)
$$-$$
(II) (B) $-$ (III), (C) $-$ (I), (D) $-$ (IV)

Answer (A)


Sol.		List-I		List-II
		(Polymer)		(Used in)
	(A)	Bakelite	(II)	Electrical switches
	(B)	Glyptal	(111)	Paints and Lacqures
	(C)	PVC	(IV)	Water pipes
	(D)	Polystyrene	(I)	Radio and television
				Cabinets
	Therefore, the correct option is (A).			

L-isomer of a compound 'A' (C₄H₈O₄) gives a positive test with [Ag(NH₃)₂]⁺. Treatment of 'A' with acetic anhydride yields triacetate derivative. Compound 'A' produces an optically active compound (B) and an optically inactive compound (C) on treatment with bromine water and HNO₃ respectively. Compound (A) is:



Answer (A)

When (A) is heated with acetic anhydride, acetylation occurs and -OH group is replaced

by $-O-C-CH_3$ and hence, triacetate is formed.

JEE (Main)-2022 : Phase-1 (27-06-2022)-Morning

20. Match List-I with List-II

List-I

(A)
$$\begin{bmatrix} CH_3 \\ - \\ CH_3(CH_2)_{15} - N - CH_3 \\ - \\ CH_3 \end{bmatrix}^+ Br^-$$

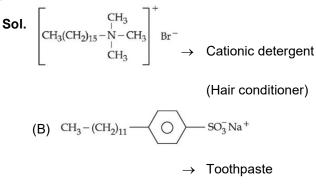
(B)
$$CH_3 - (CH_2)_{11} - O SO_3^- Na^+$$

- (C) C₁₇H₃₅COO⁻Na⁺+Na₂CO₃+Rosinate
- (D) $CH_3(CH_2)_{16}COO(CH_2CH_2O)CH_2CH_2OH$

List-II

- (I) Dishwashing power
- (II) Toothpaste
- (III) Laundry soap
- (IV) Hair conditional

Choose the correct answer from the options given below:


(A) (A)
$$-(III)$$
 (B) $-(II)$, (C) $-(IV)$, (D) $-(I)$

(B) (A)
$$-(IV)$$
 (B) $-(II)$, (C) $-(III)$, (D) $-(I)$

(C) (A)
$$-(IV)$$
 (B) $-(III)$, (C) $-(II)$, (D) $-(I)$

(D) (A) -(III) (B) - (IV), (C) - (I), (D) - (II)

Answer (B)

(Anionic detergent)

(C) C₁₇H₃₅COO⁻Na⁺+Na₂CO₃+Rosinate

 \rightarrow Laundry soap

→ Dishwashing powder

- 15 -

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

Metal deficiency defect is shown by Fe_{0.93}O. In the crystal, some Fe²⁺ cations are missing and loss of positive charge is compensated by the presence of Fe³⁺ ions. The percentage of Fe²⁺ ions in the Fe_{0.93}O crystals is _____. (Nearest integer)

Answer (85)

Sol. Fe_{0.93}O

Let the number of O^{-2} ions be 100

and the number of Fe⁺² ions be X

The number of Fe^{+3} ions be (93 - X)

- \therefore X(2) + (93 X)3 = 200
 - 279 X = 200
 - X = 79

:. % of Fe⁺² ions =
$$\frac{79}{93} \times 100$$

≃ 85%

If the uncertainty in velocity and position of a minute particle in space are, 2.4 × 10⁻²⁶ (m s⁻¹) and 10⁻⁷ (m) respectively. The mass of the particle in g is _____. (Nearest integer)

(Given : $h = 6.626 \times 10^{-34} \text{ Js}$)

Answer (22)

Sol. $\Delta v = 2.4 \times 10^{-26} \text{ m s}^{-1}$

 $\Delta x = 10^{-7} \mathrm{m}$

$$\therefore m \ge \frac{h}{4\pi(\Delta x)(\Delta v)}$$
$$\ge \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times (10^{-7})(2.4) \times 10^{-26}}$$
$$\ge \frac{6.626 \times 10^{-1}}{4 \times 2.4 \times 3.14}$$
$$\ge 0.02198 \text{ kg}$$

- \therefore Mass of the particle \simeq 22 g
- 2 g of a non-volatile non-electrolyte solute is dissolved in 200 g of two different solvents A and B whose ebullioscopic constants are in the ratio of 1 : 8. The elevation in boiling points of A and B are

in the ratio
$$\frac{x}{y}(x : y)$$
. The value of y is _____.

(Nearest Integer)

Answer (8)

Sol.
$$\Delta Tb = k_b m$$

$$\frac{(\Delta \mathsf{T}_{\mathsf{b}})_{\mathsf{A}}}{(\Delta \mathsf{T}_{\mathsf{b}})_{\mathsf{B}}} = \frac{(\mathsf{k}_{\mathsf{b}})_{\mathsf{A}}}{(\mathsf{k}_{\mathsf{b}})_{\mathsf{B}}}$$

$$=\frac{1}{8}=\frac{x}{y}$$

∴ y = 8

4. $2NOCI(g) \rightleftharpoons 2NO(g) + CI_2(g)$

In an experiment, 2.0 moles of NOCI was placed in a one-litre flask and the concentration of NO after equilibrium established, was found to be 0.4 mol/ L. The equilibrium constant at 30° C is ____ × 10^{-4} .

Answer (125)

Sol. 2NOCI(g)
$$\rightleftharpoons$$
 2NO(g) + Cl₂(g)
t = 0 2
t = t_{eq} 2 - 0.4 0.4 0.2
k_C = $\frac{(0.2) \times (0.4)^2}{(1.6)^2}$
= $\frac{0.2}{16} = \frac{1}{8} \times 10^{-1}$
= 0.125 × 10⁻¹
= 125 × 10⁻⁴

 The limiting molar conductivities of Nal, NaNO₃ and AgNO₃ are 12.7, 12.0 and 13.3 mS m² mol–1, respectively (all at 25°C). The limiting molar conductivity of Agl at this temperature is _____ mS m² mol–1.

Answer (14)

Sol.
$$\Lambda_m^0(Agl) = \Lambda_m^0(Nal) + \Lambda_m^0(AgNO_3) - \Lambda_m^0(NaNO_3)$$

= 12.7 + 13.3 - 12.0
= 26 - 12
= 14 mS m² mol⁻¹

6. The rate constant for a first order reaction is given by the following equation :

$$lnk = 33.24 - \frac{2.0 \times 10^4 K}{T}$$

The activation energy for the reaction is given by _____ kJ mol⁻¹. (In nearest integer)

(Given : $R = 8.3 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$)

Answer (166)

Sol. lnk = $33.24 - \frac{2 \times 10^4}{\tau}$

 $\therefore \quad \frac{E_a}{R} = 2 \times 10^4$ $E_a = 2 \times 10^4 \times 8.3$ = 166 kJ/mol

- 7. The number of statement(s) **correct** from the following for Copper (at. no. 29) is/are _____.
 - (A) Cu(II) complexes are always paramagnetic
 - (B) Cu(I) complexes are generally colourless
 - (C) Cu(I) is easily oxidized
 - (D) In Fehling solution, the active reagent has Cu(I)

Answer (3)

- Sol. (A) Cu(II) complexes are always paramagnetic as they have one unpaired electron due to d⁹ configuration of Cu(II)
 - (B) Cu(I) complexes are generally colourless due to *d*¹⁰ configuration.

JEE (Main)-2022 : Phase-1 (27-06-2022)-Morning

(C) Cu(I) is easily oxidised to Cu⁺² in aqueous solution

 $2Cu^+ \rightarrow Cu^{+2} + Cu$

Cu⁺¹ disproportionates to Cu⁺² and Cu

 $(E_{cell}^{\circ} > 0$ for this cell reaction in aqueous solution)

In Fehling's solution, active reagent has Cu(II) which is reduced to Cu(I) on reaction with aldehydes.

Hence (D) statement is incorrect

 Acidified potassium permanganate solution oxidises oxalic acid. The spin-only magnetic moment of the manganese product formed from the above reaction is _____ B.M.

(Nearest Integer)

Answer (6)

...

Sol. $KMnO_4$ (acidic medium) + $H_2C_2O_4 \rightarrow CO_2 + Mn^{+2}$

Mn⁺² has 5 unpaired electrons

Spin only magnetic moment = $\sqrt{5(5+2)}$

 $=\sqrt{5\times7}$

= √35 ≃ 5.92 B.M.

- ≃ 6 B.M.
- Two elements A and B which form 0.15 moles of A₂B and AB₃ type compounds. If both A₂B and AB₃ weigh equally, then the atomic weight of A is ______ times of atomic weight of B.

Answer (2)

Sol. Mole of A_2B = moles of AB_3

$$\frac{W}{2A+B} = \frac{W}{A+3B}$$
$$A + 3B = 2A + B$$
$$2B = A$$

Atomic weight of A is 2 times that of B.

10. Total number of possible stereoisomers of dimethyl cyclopentane is _____.

Answer (Bonus)

Sol. Position of methyl groups not mentioned.